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Abstract

The integrated nested Laplace approximation (INLA) [10] is now a well-known functional approxima-
tion algorithm for implementing Bayesian inference in latent Gaussian models but has some limitations: it
is unable to handle a high dimensional model parameter θ, and makes a poor approximation when the pos-
terior is multi-modal and the likelihood is highly non-Gaussian. A combination of INLA and Monte Carlo
methods is proposed to address these limitations. We test the performance of algorithms on a factor analysis
model which can be applied to multi-spectral extra-terrestrial microwave maps.

1 Introduction

Latent Gaussian models, a subclass of structured additive regression models, have a wide range of application
domains in statistics, signal processing and machine learning. Examples are regression with an additive mixed
linear model [5, 8] and random walk model [9], dynamic linear models [13], spatial and spatio-temporal models
[1, 2, 3]. The integrated nested Laplace approximation (INLA) [10] is a fast and accurate functional approxima-
tion algorithm for implementing Bayesian inference with such models when compared to conventional Monte
Carlo simulation.

The latent Gaussian model has the following structure for observations y in terms of latent variables x
and hyperparameters θ: p(y |x, θ) =

∏
j p(yj |xj , θ) (so observations are conditionally independent), p(x | θ)

is a Gaussian Markov random field (GMRF) with precision matrix Q, or at least a Gaussian with sparse preci-
sion matrix, and there is a some prior p(θ) on the model parameters. A sparse precision matrix as the prior of
the latent Gaussian model speeds up computation, of which the most popular is through the Gaussian Markov
random field (GMRF) model [12, 6, 7, 11].

The integrated nested Laplace approximation (INLA) [10] approximates the marginal posterior p(x|y)
by

p(x|y) =
∫

p(x|y, θ)p(θ|y)dθ ≈
∫

p̃(x|y, θ)p̃(θ|y)dθ ≈
∑
θj

p̃(x|y, θj)p̃(θi|y)∆θj(1)

where p̃(θ|y) = p(x,y,θ)
pG(x|y,θ)

∣∣∣
x=x∗(θ)

. Here, pG(x|y, θ) denotes a Gaussian approximation and x∗(θ) is its mode.

The mode x∗(θ) is typically calculated by a numerical optimization of the log posterior.
A set of discrete values θj is defined over which p̃(θ|y) is computed by first finding a mode µ∗

θ of
log p̃(θ|y) by a quasi-Newton optimization and computing the Hessian H∗

θ at that mode. A grid search is then
conducted from the mode in all directions until log p̃(µ∗

θ|y) − log p̃(θ|y) > δπ where δπ is a given threshold.
This gives a region over which a grid of θj values may be defined.
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The contribution of this paper is to propose several variants of Laplace Approximation (LA) to overcome
some of limitations of INLA: inability to deal with high dimensionality of the model parameters, posterior
multi-modality and highly skewed likelihoods.

2 Proposed algorithms

Problems with INLA occur if the dimension of θ is even modestly large e.g. much above 5 because the grid
over θ space becomes too large. There are also problems if p(θ|y) or p(x|y, θ) are multi-modal or severely
skewed (i.e. far from Gaussian). In order to address the above problems, we propose two classes of approach.
The first addresses a high dimension θ through a Monte Carlo approach to generate samples of θ but not x.
The other approach is still a functional approximation, where higher order moments of the function are used.
In the multi-modal case, the Gaussian approximation results in large error in the approximated distribution, i.e.
given a reasonable threshold δ, |p(x∗|y, θ)− pG(x

∗|y, θ)| > δ. Several variant LA algorithms are proposed in
Algorithm 1.

2.1 IS-LA

The first approach is a hybrid approach between importance sampling and LA, named IS-LA. It uses:

p(x|y) ≈
∫

p(x|y, θ)p̃(θ|y)dθ ≈
∫

p(x|y, θ) p̃(θ|y)
q(θ|y)

q(θ|y)dθ ≈ 1∑
iwi

∑
i

p(x|y, θi)wi,

where θi ∼ q(θ|y) and its weights is defined as wi =
p̃(θi|y)
q(θi|y) =

p(y,x,θi)

p(x|y,θi)

∣∣∣
x=x∗(θi)

q(θi|y) . The proposal function q(θi|y)
can be defined in different ways.

• The prior distribution (IS-LA(1)): The proposal distribution is the prior distribution: q(θ|y) = p(θ).
In general importance sampling has a serious problem in obtaining incorrect weights in the tail area when
the tail of the proposal distribution is too small. This problem is avoided since the terms are analytically
cancelled off as wi =

p(y|x,θ)p(x|θ)
pG(x|y,θ)

∣∣∣
x=x∗(θ)

. In addition, using the prior as the proposal distribution does

not require Newton-style optimization.

• An approximation to the posterior distribution (IS-LA(2)): Although the prior distribution has many
benefits, it may not be close to the posterior. It may be better to use a proposal that depends on the data;
ideally q(θ|y) = p(θ|y). However, it is rather difficult to obtain a reasonable p(θ|y) if p(y |x, θ) is
either non-linear or non-Gaussian. A Laplace approximation can be used: q(θ|y) = pG(θ|y) via the
quasi-Newton approach. Although this approach works efficiently, it can suffer from incorrect weights
when values are sampled in the tail.

2.2 MH-LA

Another hybrid approach combines LA and the Metropolis-Hastings (MH) algorithm. Samples are generated
from p(θ|y) using the Laplace approximation as the MH proposal distribution. The accept probability is A =

min

(
1, p̃(θ

′ |y)q(θ|θ′ )
p̃(θ|y)q(θ′ |θ)

)
where θ and θ

′
denote current and new samples respectively, and p̃(θ

′ |y) = p(y,x,θ
′
)

p(x|y,θ′ )

∣∣∣∣
x=x∗(θ′ )

.

There are several possibilities for the proposal function, as below.

• A random walk: One of the simplest proposal functions is a random walk q(θ
′ |θ) = N (θ

′
; θ,Σθ)

where θ and θ
′

denote the previous and current samples respectively. In addition, Σθ can be chosen
either manually or systematically.
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• An approximation to the posterior distribution: The proposal function used in IS-LA can be used
in MH-LA. For instance, the optimal proposal function is designed as q(θ

′ |θ) = pG(θ
′ |y), as by the

quasi-Newton approach.

2.3 Multiple initial points

An alternative approach to the multiple mode problem is to repeat the search for modes of p(x |y, θ) from
different initial points. Each search yields a mode and Hessian. Of course there is no guarantee that all modes
will be discovered, even if the number of them is known.

Algorithm 1 Variant Laplace Approximations
1: Choose an approach, type∈ {INLA, IS-LA, MH-LA}.

Obtain a mode and its negative hessian matrix by a quasi newton approach for p̃(θ|y).

2: (µ∗
θ,H

∗
θ) = argmaxθ log

(
p(y,x,θ)
pG(x|y,θ)

∣∣∣
x=x∗(θ)

)
where x∗(θ) be a mode of pG(x|y, θ).
Obtain θis given the following strategies:

3: if type is INLA then
4: After finding (µ∗

θ,H
∗
θ), do a grid search from the mode in all directions until the log p̃(µ∗

θ|y) −
log p̃(θ|y) > δπ where δπ is a given threshold.

5: else if IS-LA then
6: Draw samples from the optimal proposal function, q(θ|y) = p(θ|µ∗

θ,H
∗−1
θ ).

7: Calculate the weights by wi =
p̃(θ(i)|y)
q(θ(i)|y) =

p(y,x,θ(i))

pG(x|y,θ(i))

∣∣∣∣
x=x∗(θ(i))

p(θ(i)|µ∗
θ ,H

∗−1
θ )

.

8: else if MH-LA then
9: Draw samples from the proposal function such as optimal proposal function q(θ

′ |θ) = p
(
θ|µ∗

θ,H
∗−1
θ

)
.

10: Calculate the acceptance ratio by A = min

{
1, p̃(θ

′ |y)q(θ;θ′ )
p̃(θ|y)q(θ′ ;θ)

}
11: end if
12: Estimate p(x|y) =

∑
θi
p(x|y, θi)p̃(θi|y)∆θi.

3 Application to multi-spectral image source separation

In the multi-spectral source separation problem, the data consists of nf images of J pixels, that usually cor-
respond to images at different frequencies v1, · · · , vnf

. The data at pixel j are denoted yj ∈ ℜnf , j =

1, 2, · · · , J , while Yk = (y1k, · · · , yJk)T denotes the image at frequency vk. The observed images are believed
to be built up of linear combinations of ns sources, represented by the vectors xj ∈ ℜns . We assume that the yj

follow a standard statistical independent components analysis model, so that they can be represented as a linear
combination of the xj such that yj = Axj + ej where A is an nf × ns mixing matrix and ej is a vector of nf

independent Gaussian error terms with precisions τ = {τ1, · · · , τnf
}. We also define Xi = {xji|j = 1, · · · , J}

to be the image of the ith source. Stacking the Yk and Xi as y = (YT
1 , · · · ,YT

nf
)T and x = (XT

1 , · · · ,XT
ns
)T ,

and stacking the error terms by frequency E, we have y = Bx + E where B = A ⊗ IJ×J is the Kronecker
product of A with the J ×J identity matrix. The vector of error terms E is zero-mean Gaussian with precision
matrix C = diag(τ11J , τ21J , . . . , τnf

1J), where 1J is a vector of ones of length J .
A so-called intrinsic GMRF prior is used for each source Xi, defined as follows. Let ∆ji be differenced

values of Xi at pixel j. A second order random walk can be defined by letting ∆ji =
∑

j′∈ne(j)Xj′i −
|ne(j)|Xji be independent zero-mean Gaussians with precision ϕi, for i = 1, . . . , ns where | · | represents the
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cardinality of a particular set and ne(j) is the set of neighbouring pixels of j. It can be shown that the resulting
distribution of Xi is of Gaussian form: p(Xi|θ) ∝ exp

{
−ϕi

2 Xi
TQXi

}
where Qf = DTD and D is a J × J

Toeplitz matrix. The stacked set of latent variables x =
[
X1

T ,X2
T , . . . ,Xns

T
]T

is zero-mean Gaussian with
precision Q = diag(ϕ1Qf , · · · , ϕnsQf ). However the precision matrix is not of full rank; this is the intrinsic
GMRF and is widely used as a prior distribution in Bayesian latent models; see [9].

This is a model of the form where INLA can be applied, with the latent variables x having precision
matrix Q. Original INLA is the best choice in this simple linear model. It is also noted that, in this model, the
likelihood is p(y|x, θ) = N (Y;Bx,C−1).

3.1 Mixing Matrix Structure

In this application, A is parameterized and denoted A(θ). One of the most significant applications with this
model is the separation of Cosmic Microwave Background (CMB) signals from full-sky map via Plank satilite.
Each column of A(θ) is the contribution to the observation of a source at different frequencies, which is written
as a function of the frequencies and θ. These parameterizations are approximations that come from the current
state of knowledge about how the sources are generated. Here, we merely state the parameterization that we
are going to use, and refer to [4] for a more detailed exposition on the background to them. It is assumed that
the CMB is the first source and therefore, it corresponds to the first column of A(θ). It is modelled as a black
body at a temperature, and its contribution is a known constant at each frequency. The parametrization of the
mixing matrix is given as

Ai1(θ) =
g(vi)

g(v1)
,Ai2(θ) =

(
vi
v1

)κs

andAi3(θ) =
exp(ηv1/kBT1)− 1

exp(ηvi/kBT1)− 1

(
vi
v1

)1+κd

where g(vi) =
(

ηvi
kBT0

)2
exp(ηvi/kBT0)

(exp(ηvi/kBT0)−1)2
, T0 = 2.725 is the average CMB temperature in Kelvin, T1 = 18.1,

η is the Plank constant and kB is Boltzmann’s constant. The ratio g(vi)/g(v4) is designed to ensure that
A41(θ) = 1 as we constraint the fourth row of A(θ) to be ones. There are two unknown model parameters for
A, for synchrotron κs ∈ {κs : −3.0 ≤ κs ≤ −2.3} and the spectral indeces for dust κd ∈ {κd : 1 ≤ κd ≤ 2}.

There are two types of hidden variables: sources x and model parameters θ, which consists of κs, κd and
a precision parameter ϕi for the GMRF prior of each source. The prior for θ is designed as p(τ1:ns , κs, κd) =

[
∏ns

i=1 p(τi)] p(κs)p(κd) where p(τi) = G(τi;αi, βi), p(κs = U(κs;ακs , βκs) and p(κd) = U(κd;ακd
, βκd

).
Let G and U denote the Gamma distribution and the uniform distribution and α and β are hyper-parameters
which are fixed in this paper: we assign this hyper parameter to generate flat prior.

3.2 Data description and comparison of the performance of IS-LA and MH-LA

The first source is a second-order isotropic GMRF with mean 0, standard deviation 0.00389 and interaction
parameter 0.2. The second source is a mixture of two second-order GMRFs with means 0.003 and 0.006,
standard deviation 0.0003 and 0.001 and interaction parameters (horizontal, SW-NE, vertical and NW-SE)
of [−0.1, 0.05, 0.7, 0.05] and [−0.05, 0.05, 0.05, 0.05] respectively. The pixel component label (e.g. which
GMRF the pixel takes its value from) is generated by an Ising model with temperature 1/0.8. Pixels of the
third source are i.i.d. mixture of two Gaussians with means 0.0003 and 0.0006, standard deviations 0.0001

and 0.0001 and weights 0.6 and 0.4. The observations were also generated at 6 channels at the frequencies
to be observed by Planck (30, 44, 70, 100, 143 and 217GHz), using the mixing matrix model of Section 3.1
with special indices κs = −2.8 and κd = 1.4 as shown in Fig. 1. The measurement error standard deviations
used were 0.00126, 0.00120, 0.00113, 0.00028, 0.00018 and 0.00018mK at each channel, respectively, which
are those that are expected to be attained by the Planck detectors.

The extracted sources obtained by the different algorithms are plotted in Fig. 2. The ground truth
was well recovered in most approaches. Tables 1 and 2 demonstrate the performance based on a measure of
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Figure 1: Observed signals

goodness of fit Peak Signal-to-Inference Ratio (PSIR) and running time respectively. It can be seen that the
proposed variant LAs have similar performance to MCMC in accuracy while they are considerably faster.
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Figure 2: Comparison of restored three signals: GT (Ground Truth) and LS (Least Square)

CMB Synchrotron Dust
LS 28.13± 6.26 45.10±6.66 18.28±6.19

MCMC 41.47±18.0 45.17±7.51 27.80±11.3
INLA(1) 40.87±16.3 44.90± 6.25 27.90± 11.3
INLA(2) 40.93±17.2 44.90±6.23 27.89±11.2
IS-LA(1) 41.19±16.4 44.94±6.29 27.78± 11.7
IS-LA(2) 41.11±15.1 44.93±6.37 27.90± 11.3
MH-LA 41.13± 16.1 44.92± 6.27 27.89±11.2

Table 1: PSIR comparison: INLA(1) and INLA(2) used GF and GMRF priors respectively. Also, LS is acronym
of (General) Least Square.

LS MCMC INLA(1) INLA(1) IS-LA(2) MH-LA
0.00785 1729.2 2.3283 3.1743 23.824 26.836
±0.0315 ±140.42 ±0.7104 ±0.6661 ±3.4309 ±5.25

Table 2: Run time comparison for the synthetic example

4 Conclusion

The well-known integrated nested Laplace approximation (INLA) has several limitations. In this paper, several
variants of Laplace Approximation (LA) are proposed to tackle such serious limitation of the conventional
INLA. In order to solve the high dimensionality over the model parameter space, Monte Carlo (MC) simulation
are hybridized with LA. This approach still practically fast and efficient since MC draws samples only from
model parameter space.
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