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We study functional autoregressive time series models that explicitly present dependence on

the derivatives of the past observations. The time series observations are assumed to be real valued

functions defined on Rm. Equivalently, the data may be seen as hyper-surfaces in Rm+1. We assume

they are square integrable w.r.t. the Lebesgue measure on Rm. Since, under regularity conditions,

models that are linear on the observation and where the dependence on the derivative of the data is

linear, like, for example:

Xt+1(p) = 〈α(p, q),Xt(q)〉+ 〈β(p, q),∇Xt(q)· V(q)〉+ εt+1(p)(1)

are reducible to functional (autoregressive time series) linear models without explicit dependence on

the derivatives, we will consider models, where the derivative is present, that are non linear with

respect to the data or to the derivatives of the data. These models, if they are not degenerated, can

not be reduced to functional linear models. We will focus on the non degenerated quadratic models:

Xt+1(p) = 〈α(p, q),Xt(q)2〉+ 〈β(p, q),∇Xt(q)· V(q)〉+ εt+1(p)(2)

and

Xt+1(p) = 〈α(p, q),Xt(q)〉+ 〈β(p, q),∇Xt(q)· ∇Xk(q)〉+ εt+1(p),(3)

since the ideas presented in their analyses are extensible to more general models.

Here p, q are points in Rm, α : R2m → R and β : R2m → R are square integrable, V : Rm → Rm

is a known vector field, the sequence εt : Rm → R, for t > 0, is i.i.d. zero mean functional noise, and,

for all p, β(p, · ) is assumed to be smooth with compact support. Scalar product of fields is denoted

by the symbol · and 〈· , · 〉 stands for the inner product w.r.t. the common variable, more precisely,

〈f(p, q), g(q)〉 =
∫
Rm f(p, q)g(q)dq.

Given a set of observations {Xt: 1 ≤ t ≤ T}, we present estimators α̂ and β̂ of α and β that are

based on orthonormal basis expansions.

Identifiability

Now we address the identifiability issue. Concerning the (non degenerated) functional time series

models (2) or (3), if different pairs of functions (α, β) and (γ, δ) were such that they would generate

the same stochastic process, then these models would be unidentifiable. In the case of model (2), non

identifiability holds if and only if, there exist different pairs of functions (α, β) and (γ, δ) such that for

all X the following equality:

〈α(p, q),X (q)2〉+ 〈β(p, q),∇X (q)· V(q)〉 = 〈γ(p, q),X (q)2〉+ 〈δ(p, q),∇X (q)· V(q)〉(4)

is fulfilled. However, we can prove that if we have 〈f(p, q),X (q)2〉+ 〈g(p, q),∇X (q)· V(q)〉 = 0, for all

X , then f = 0 = g. Thus, α(p, q) = γ(p, q) and β(p, q) = δ(p, q), and the the functional time series

model (2) is identifiable. Concerning the model (3), the requirement: for all X ,

〈α(p, q),Xt(q)〉+ 〈β(p, q),∇Xt(q)· ∇Xk(q)〉 = 〈γ(p, q),Xt(q)〉+ 〈δ(p, q),∇Xt(q)· ∇Xk(q)〉,(5)

also implies (α, β) = (γ, δ) and the the functional time series model (3) is identifiable.
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Estimation

In order to estimate the functional parameters that appear in models (2) and (3) we will expand

them in series using an orthonormal basis. Let B = {ϕi: i ∈ I} be an orthonormal basis of L2(Rm).

The set {ϕi ⊗ ϕj : i, j ∈ I} is an orthonormal basis of L2(R2m).

We will need the following definitions:

Definition 1: (Product connexion coefficients) For all i, j in I let

ϕiϕj =
∑
k∈I

Γki,jϕk.(6)

For all i, j and k in I, the uniquely determined coefficients Γki,j in (6) will be called product connexion

coefficients.

Definition 2: (Differential connexion coefficients) Let {ej : 1 ≤ j ≤ m} be the canonical

basis of Rm. For all i in I let

∇ϕi = (
∑
k∈I

∆1,k
i ϕk, ...,

∑
k∈I

∆m,k
i ϕk) =

m∑
j=1

∑
k∈I

∆j,k
i ϕkej(7)

For all i, k in I, and j ∈ N, 1 ≤ j ≤ m, the uniquely determined coefficients ∆j,k
i in (7) will be called

differential connexion coefficients. In this way, partial derivatives are written as ∂jϕi =
∑

k∈I ∆j,k
i ϕk.

Now, using B ⊗ B, we write

α =
∑
i,j∈I

ai,jϕi ⊗ ϕj and β =
∑
i,j∈I

bi,jϕi ⊗ ϕj .(8)

Once we find estimators âi,j for ai,j and b̂i,j for bi,j we can construct estimators, α̂, and β̂ of α and β

by substituting âi,j for ai,j and b̂i,j for bi,j in (8).

The representations, using bases B and B ⊗ B, of models (2) and (3) are written as∑
i∈I

xit+1ϕi = 〈
∑
i,j∈I

ai,jϕi ⊗ ϕj , (
∑
i∈I

xitϕi)
2〉+

〈
∑
i,j∈I

bi,jϕi ⊗ ϕj , (∇
∑
i∈I

xitϕi)· (
m∑
j=1

∑
i∈I

vj,iϕiej)〉+
∑
i∈I

eit+1ϕi(9)

and ∑
i∈I

xit+1ϕi = 〈
∑
i,j∈I

ai,jϕi ⊗ ϕj ,
∑
i∈I

xitϕi〉+

〈
∑
i,j∈I

bi,jϕi ⊗ ϕj , (∇
∑
i∈I

xitϕi)· (∇
∑
i∈I

xitϕi)〉+
∑
i∈I

eit+1ϕi,(10)

where Xt =
∑

i∈I x
i
tϕi, V =

∑m
j=1

∑
i∈I v

j,iϕiej , and εt =
∑

i∈I e
i
tϕi.

Using connexion coefficients, equalities (9) and (10) can be written as

∀i ∈ I xit+1 =
∑
j,k,l∈I

ai,jxkt x
l
tΓ
j
k,l +

m∑
d=1

∑
j,k,l,s∈I

bi,jxstv
d,l∆d,k

s Γjk,l + eit+1(11)

and

∀i ∈ I xit+1 =
∑
j∈I

ai,jxjt +

m∑
d=1

∑
j,k,l,s,w∈I

bi,jxwt x
s
t∆

d,k
w ∆d,l

s Γjk,l + eit+1.(12)
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The systems of equations (11) and (12) are the basic relations from which we can construct

estimators of ai,j and bi,j and, consequently, of α and β. In practice a conveniently chosen finite subset

F of B will be used in place of I in the systems (11) and (12). The size of F will be chosen in

accordance with the length of the time series, typically, for asymptotic reasonings, in such a way that

the ratio of the size of F to the time series length, T, goes to zero as both this length and #F go to

infinity. For practical concerns, #F is chosen in such a way that one is able to nicely estimate the

approximate coefficients ãi,j and b̃i,j , using âi,j and b̂i,j , in the approximate systems

∀t, 1 ≤ t ≤ T − 1 ∀i ∈ F xit+1 =
∑

j,k,l∈F
ãi,jxkt x

l
tΓ
j
k,l +

m∑
d=1

∑
j,k,l,s∈F

b̃i,jxstv
d,l∆d,k

s Γjk,l + eit+1(13)

and

∀t, 1 ≤ t ≤ T − 1 ∀i ∈ F xit+1 =
∑
j∈F

ãi,jxjt +
m∑
d=1

∑
j,k,l,s,w∈F

b̃i,jxwt x
s
t∆

d,k
w ∆d,l

s Γjk,l + eit+1.(14)

In this article, we will estimate the approximate coefficients using functional least squares, i.e., our

estimation will be guided by the criterion of minimization of the sum of the squares of the L2 distances

between the time series observed functional values and the expected ones predicted by the functional

time series model, or, equivalently, by the minimization of the total energy of the errors.

Now, form (2) and (3) we have:

T−1∑
t=1

‖Xt+1(p)− 〈α(p, q),Xt(q)2〉 − 〈β(p, q),∇Xt(q)· V(q)〉‖22 =

T−1∑
t=1

‖εt+1(p)‖22 =
T−1∑
t=1

∑
i∈I

(eit+1)
2 ≈

T−1∑
t=1

∑
i∈F

(eit+1)
2(15)

and
T−1∑
t=1

‖Xt+1(p)− 〈α(p, q),Xt(q)〉 − 〈β(p, q),∇Xt(q)· ∇Xk(q)〉‖22 =

T−1∑
t=1

‖εt+1(p)‖22 =

T−1∑
t=1

∑
i∈I

(eit+1)
2 ≈

T−1∑
t=1

∑
i∈F

(eit+1)
2,(16)

and the minimization criterion applied to these models is equivalent to ordinary least squares estima-

tion of the coefficients in (11) and (12) or, approximately, in (13) and (14). The estimators âi,j and

b̂i,j are those that minimize

T−1∑
t=1

∑
i∈F

xit+1 −
∑

j,k,l∈F
ãi,jxkt x

l
tΓ
j
k,l −

m∑
d=1

∑
j,k,l,s∈F

b̃i,jxstv
d,l∆d,k

s Γjk,l

2

(17)

and

T−1∑
t=1

∑
i∈F

xit+1 −
∑
j∈F

ãi,jxjt −
m∑
d=1

∑
j,k,l,s,w∈F

b̃i,jxwt x
s
t∆

d,k
w ∆d,l

s Γjk,l

2

(18)

From here on, to shorten the lengthy equations, we will use the summation convention, i.e.,

excluding the index t, if an index appears twice in a monomial then summation in this index is

implied.
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Standard minimization techniques lead to the following systems of equations that must be sat-

isfied by the estimators âi,j and b̂i,j . Note that these estimators, a priori, depend on F .

∀(i, j) ∈ F2
T−1∑
t=1

((
xit+1 − âi,j′xkt x

l
tΓ
j′
k,l − b̂i,j′xstv

d,l∆d,k
s Γj′k,l

)(
xkt x

l
tΓ
j
k,l

))
= 0

T−1∑
t=1

((
xit+1 − âi,j′xkt x

l
tΓ
j′
k,l − b̂i,j′xstv

d,l∆d,k
s Γj′k,l

)(
xstv

d,l∆d,k
s Γjk,l

))
= 0(19)

and

∀(i, j) ∈ F2
T−1∑
t=1

(
xit+1 − âi,j′xj′t − b̂i,j′xwt x

s
t∆

d,k
w ∆d,l

s Γj′k,l

)
(xjt ) = 0

T−1∑
t=1

((
xit+1 − âi,j′xj′t − b̂i,j′xwt x

s
t∆

d,k
w ∆d,l

s Γj′k,l

)(
xwt x

s
t∆

d,k
w ∆d,l

s Γjk,l

))
= 0(20)

Observe that both systems of equations (19) and (20) are linear in âi,j and b̂i,j , the estimators

of the coefficients. This is of great advantage for applications due to computational reasons.

The final estimators are written

α̂ = α̂F =
∑
i,j∈F

âi,jϕi ⊗ ϕj and β̂ = β̂F =
∑
i,j∈F

b̂i,jϕi ⊗ ϕj .(21)

Stability

Let us now study the stability of the dynamical systems defined by equations (2) and (3). We

will establish sufficient conditions on the functional parameters and on the functional noise that will

guarantee that the orbits of all functions that belong to a ball centered at the origin of an appropriate

function space will be bounded and will all remain inside this ball. Now we will consider the space

C10(Rm) of continuously differentiable real functions defined on Rm with compact support. Define,

for f ∈ C10(Rm), ‖f‖1,∞ = ‖f‖∞ ∨
(∨m

i=1 ‖∇if‖∞
)
. Denote Suppf the support of a function f. The

Lebesgue measure is denoted by `.

Theorem 1: Consider the model (2). Let for all q ∈ Rm, α(· , q) and β(· , q) belong to C10(Rm)

and suppose that, for all t ∈ N∗ and a.s., the trajectories of the functional noise belongs to C10(Rm).

Assume also that all innovations are uniformly bounded in the ‖ ‖1,∞ norm, i.e., there exists η > 0

such that for all t, and a.s., ‖εt‖1,∞ < η. Let A = supp `(Supp α(p, · )) supq ‖α(· , q)‖1,∞ and B =

m supp `(Supp β(p, · )) supq ‖β(· , q)‖1,∞ (
∨m
i=1 ‖V i‖∞). Suppose that B < 1 and A ≤ (1 − B)2/(4η).

Then, the following stability result holds: For any t0 ∈ N∗, if Xt0 ∈ B[0, r] ⊂ (C10(Rm), ‖ ‖1,∞) then,

for all t ≥ t0, Xt ∈ B[0, r], where r =
1−B+

√
(1−B)2−4Aη
2A .

Analogously, we have the following:

Theorem 2: Consider the model (3). Let for all q ∈ Rm, α(· , q) and β(· , q) belong to C10(Rm)

and suppose that, for all t ∈ N∗ and a.s., the trajectories of the functional noise belongs to C10(Rm).

Assume also that all innovations are uniformly bounded in the ‖ ‖1,∞ norm, i.e., there exists η > 0

such that for all t, and a.s., ‖εt‖1,∞ < η. Let A = m supp `(Supp β(p, · )) supq ‖β(· , q)‖1,∞ and B =

supp `(Supp α(p, · )) supq ‖α(· , q)‖1,∞. Suppose that B < 1 and A ≤ (1−B)2/(4η). Then, the following

stability result holds: For any t0 ∈ N∗, if Xt0 ∈ B[0, r] ⊂ (C10(Rm), ‖ ‖1,∞) then, for all t ≥ t0,

Xt ∈ B[0, r], where r =
1−B+

√
(1−B)2−4Aη
2A .
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Final Remarks

Although we have considered the observations of the time series Xt to be defined on Rm, we

could have considered them to be defined on a subset O of Rm. In this case we would have chosen

B to be an orthonormal basis of L2(O). We observe here that the innovations εt are assumed to be

a.s. differentiable. The time series models (2) and (3) are among the simplest functional time se-

ries models where dependence on the derivatives of the observations is present. However, the idea

of writing these derivatives as linear combinations of the derivatives of the basis’ functions through

the use of derivative connexion coefficients, and the possibility of writing products of functions as

linear combinations of basis’ functions, made possible by the use of product connexion coefficients,

permit us to study and to estimate time series models that belong to a large class of models. This

class includes models such as polynomial or rational models with autoregressive and moving average

features where higher order derivatives are also present. Limit models such as analytic and meromor-

phic models involving derivatives of arbitrary order are also in this class. Observe that there is no

need to define second or higher derivative connexion coefficients; if we denote {ej,k: 1 ≤ j, k ≤ m}
the basis of Rm × Rm, we can write the second derivative of a function X =

∑
i∈I x

iϕi as d2X =

d
(∑m

j=1

∑
i,v∈I x

i∆j,v
i ϕvej

)
=
∑m

k=1

∑m
j=1

∑
i,v,w∈I x

i∆j,v
i ∆k,w

v ϕwej,k. Higher derivatives are written,

using the summation convention, simply as dnX = xi∆j1,v1
i ∆j2,v2

v1 ...∆jn,w
vn−1ϕwej1,...,jn , and they can be

used to obtain systems of algebraic equations that represent the functional time series model with

respect to the basis chosen. Clearly, we assume that the basis’ functions are at least as many times

differentiable as the highest order of differentiation that appears in the functional time series model.

The fulfillment of this requirement is associated to the construction of the algebraic representations.

Note that it is not necessary for the writing of the functions Xt, εt and their derivatives of any order.

(Infinitely smooth functions can be written as series of Haar functions, for example, but this is not

the point here.) If O is a parallelepiped in Rm, then the choice of tensor product Fourier sines and

cosines basis presents the desirable property of being formed by functions in the class C∞(O). We

observe here that this basis also presents the very desired feature that each basis’ function has a small

number of non zero differential connexion coefficients associated to it. As a matter of fact there are

only m of these coefficients that are different from zero associated to each basis’ function. Observe

that, in general, i.e., with an arbitrary basis B, this number could be infinite. However, there are

situations where the use of other basis, like wavelet basis is more suitable. This is the case when the

functions α and β present strong localized frequency behaviour. In this situation the wavelet family

must satisfy the differentiability requirements imposed by the higher order of differentiation in the

time series model.
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ABSTRACT

We study Rm+1-hyper-surface time series models with dependence on derivatives of past obser-

vations. Estimation using orthonormal series expansions of the functional parameters is presented.

Product connexion and differential connexion coefficients are defined and used to reduce the functional

models to algebraic systems of equations. Two prototype non-linear models are studied. Minimization

of the sum of the squares of the L2 norm of the residuals is shown to be equivalent to the minimization

of the sum of squared residuals in the algebraic representation. O.L.S. estimation is applied to the

systems of algebraic equations associated to these models and the expressions for the estimators are

obtained. Results concerning the stability of these dynamical systems are presented. Extensions to

more general settings are discussed.

Keywords: Non linear functional time series, Autoregressive, Dependence on derivatives, Or-

thonormal series expansions, Stability, Dynamical system
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