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1 Introduction

CART (Classification and Regression Trees) is a non-parametric tree-structured recursive partitioning

method, introduced by Breiman et al. [1984], to predict a response variable Y on the basis of p

predictors: X1, . . . , Xp observed on a learning sample of N units. The algorithm consists of two main

stages: growing and pruning. In growing the tree is recursively partitioned into subsets (nodes);

each partition is obtained by examining all the possible binary splits along the observed data of each

predictor variable and selecting the split that most reduces some measure of node impurity. The result

is a sequence of nested trees, with increasing number of leaves (terminal nodes), until no more splits

are possible and the fully grown tree is reached. The pruning operation on the fully grown tree aims

then to select the best subtree and consists in declaring an internal node as terminal and deleting all

its descendants; this makes the tree more general and prevents an overfitting on the training set.

In this paper the case where the response Y is an ordered categorical variable with k levels

y1 ≺ . . . ≺ yk is considered. The aim of the classification tree is thus to predict the level of Y on the

basis of the vector X of the p explanatory variables. For example in a credit scoring application a

bank is interested in classifying loan applicants into risk classes such as: ”very low”, ”low”, ”medium”,

”high”, ”very high”, according to their characteristics (monthly income, outstanding debt, financial

assets, age,...). The tree is grown according to a training set of N cases whose measurements, both

for the response and for the predictors, are available. The derived classification rule is then applied

to predict the level of the response for a new unit with explanatory variables vector x.

Predicting the ordinal classes can thought to be somewhat intermediate between classification

and regression trees; however, while classification trees for unordered categorical variables and regres-

sion trees have been widely studied, the use of decision trees in ordinal regression is largely unex-

plored. By ignoring the ordering information in the class attribute, standard classification algorithms

for nominal classes can be applied but some information is lost. This fact prejudices the predictive

performance of the classification rule because, besides the accuracy, the severity of the error should

be taken into account. On the other side the use of regression trees requires the ordinal response to

be transformed into a numeric one. However, the obtained regression trees may largely depend on the

mapping procedure adopted rather than on the ordinal relationship among classes.

Instead of accommodating existing algorithm to the ordinal classification task, some papers face

directly the problem of identifying a suitable rule to grow ordinal classification trees. Notable works are
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the ones by Xia et al. [2006] and Piccarreta [2008]. In the former the authors propose the use of a new

impurity measure named as ranking impurity while in the latter new criteria to obtain classification

trees for ordinal response are introduced and compared with other methods via simulations. We will

consider these proposals into details in the next sections and propose some improvements based on a

known decomposition result regarding Gini’s mean difference.

2 Impurity measures for ordinal variables

Consider a generic node with N cases and the dependent variable having k levels. The number of cases

and the relative proportion of class j are denoted by nj and pj (j = 1, . . . , k), respectively. Denotes

with p = (p1, . . . , pk) the proportion vector in the current node.

The most used function to measure node impurity when the response is nominal is the Gini

heterogeneity index :

IN (p) =
�

i �=j

pi pj =
k�

j=1

pj (1− pj) = 1−
�

p2j(1)

which assumes that the cost of misclassifying a j−class case into a class i is equal to 1 for all i �= j. IN
satisfies the properties usually required to an impurity function (see Breiman et al. [1984] p. 32), as

it takes its minimum value 0 iff all cases of the node belong to the same class i.e. the node is as pure

as possible; conversely, the maximum value is reached iff the proportion vector is p = (1/k, . . . , 1/k)

and the node is as impure as possible. Moreover IN (p) = IN (g(p)), g(p) being a permutation of the

elements of p.

When the categories of the response Y are naturally ordered, (1) is inadequate to measure the

impurity of the node given that the misclassification cost of a case depends also on the number of

categories between the assigned and the actual class. Consider a loan applicant with actual risk class

”high”; misclassifying this case as ”low” is doubtless more serious than misclassifying it as ”medium”.

For the same reason it seems improper to let the impurity measure be invariant to permutations of the

proportion vector: (0.5, 0.3, 0, 0, 0.2) is more impure than (0.5, 0.3, 0.2, 0, 0). Even if the purity

concept is strictly related to the concentration of cases on one or few classes (regardless of which), we

thus need a measure accounting for the dispersion of cases among classes as well. A suitable dispersion

measure has been introduced by Gini [1912]. After denoting as F (yj) = Fj =
�j

i=1 pi the cumulative

distribution function (cdf) of Y evaluated at yj , the impurity of the node is thus measured by:

D(p) = 2
k−1�

j=1

Fj (1− Fj) .(2)

D(p), as IN (p), takes its minimum value 0 iff all cases of the node belong to the same class; the

maximum value (k − 1)/2 is instead reached iff the proportion vector is p = (1/2, 0, . . . , 0, 1/2) i.e.

the cases are equally separated on the two extreme classes. D(p) is equivalent to the measure:

IO(p) =
k�

j=1

Fj (1− Fj) .(3)

considered in Piccarreta [2008]. Another impurity measure to be used in the ordinal case is the ranking

impurity

Irank(p) =
k�

j=1

j�

i=1

(j − i) nj ni(4)

proposed by Xia et al. [2006].
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Measures (3) and (4) are easily shown to be equivalent. Replace the k ordered categories of the

response Y with the set of integers 1, 2, . . . , k and consider the Gini mean difference with repetition

(gmd), Gini [1912], of the node distribution:

∆(p) =
1

N2

�

j

�

i

|j − i| nj ni =
�

j

�

i

|j − i| pj pi = 2
�

j

�

i<j

(j − i) pj pi.(5)

It follows that ∆(p) = D(p) (see for instance Leti [1983]). Hence

IO(p) = N2 Irank(p) =
1

2
D(p).(6)

As the scale factor in the impurity function does not influence the splitting rule, using (2), (3) or (4)

will then lead to the same tree.

3 Splitting rules for ordinal variables

The tree growing phase starts with all the N cases in a single node, the root. In the following stages,

the algorithm performs an optimal search for a suitable division of each node into two disjoint subnodes

according to one of the predictors. For every binary split s, denote with L and R the two subnodes

obtained, and let nL, nR and πL, πR be the number and the proportions of cases (of the parent node)

placed into L and R, respectively (πL + πR = 1). The number of cases and the relative proportion

of class j in the subnodes are denoted, respectively, as njt and pjt, j = 1, . . . , k, t ∈ {L,R} and the

proportion vectors as pt = (p1t, . . . , pkt), t ∈ {L,R}.
Given an impurity function I, descendant nodes should be less impure than their parents. Thus

the algorithm searches the split s∗ that maximizes the impurity reduction

I(p)− πL I(pL)− πR I(pR).(7)

As shown in section 2, the impurity functions (3), (4) and (5) are proportional; consequently maxi-

mizing (7) leads to the same split when such functions are used.

Besides splitting rules operating on an overall measure of node impurity to achieve the maximum

impurity reduction, some different strategies can be adopted. An interesting proposal by Piccarreta

[2008] makes use of a measure introduced by Agresti [1981] to evaluate the degree of association

between a nominal and an ordinal variable. The idea is to consider the nominal variable induced by

a split s, whose categories are L and R, and to evaluate its association with the response Y by the

index:

A =
k�

j=1

�

i>j

pjL piR −
k�

j=1

�

i>j

pjR piL =
k�

j=1

pjL (1− FjR)−
k�

j=1

pjR (1− FjL) .(8)

Piccarreta [2008] shows that −1 ≤ A ≤ +1 with |A| = 1 iff the split s originates two non-overlapping

subnodes i.e. s induces a so-called ordinal exclusive split. Thus the use of the following splitting

criterion is proposed:

CA(s) = πLπR |A|.(9)

This latter proposal appears to be very attractive when dealing with ordinal variable because, condi-

tionally on πLπR, (9) prefers splits that place individuals with a level on the response up to a certain

class in one subnode, say L, and the remaining individuals in the other subnode R. This means that,

considering again the credit ranking example, loan applicants with a risk level up to (for example)

”medium” are mainly placed in the left subnode while applicants with risk level higher than ”medium”
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Table 1: Agresti index and splits evaluation given πL and πR

Split pL pR

s1 (0.60, 0.40, 0, 0, 0) (0, 0, 0.50, 0.25, 0.25)

s2 (0.90, 0.10, 0, 0, 0) (0, 0, 0.50, 0.25, 0.25)

s3 (0.90, 0.08, 0.02, 0, 0) (0, 0, 0.50, 0.25, 0.25)

s4 (0.90, 0, 0.10, 0, 0) (0, 0.30, 0, 0, 0.70)

s5 (0.90, 0, 0, 0.10, 0) (0, 0.30, 0, 0, 0.70)

stay in the right subnode. Moreover Piccarreta [2008] showed, via simulations, that this splitting cri-

terion has a good performance with respect to the other ordinal criteria, when the comparison is based

on the miscalssification cost.

As a final remark, recall that Cerioli [1990] (see also Cerioli [1988, 1990]) proved an interesting

relation between the Agresti index (8) and the transvariation probability measure proposed by Gini

[1916]. Without entering into details, recall that if Yt, t ∈ {L,R} are the categories of two randomly

selected units from subnodes L and R and Met, t ∈ {L,R} denote the medians of the corresponding

distribution, the two units are said to be transvariant (with respect to the median) if either of the

following relations holds:

{YL � YR|MeL ≺ MeR} or {YL ≺ YR|MeL � MeR} .

4 A new splitting criterion based on Gini’s mean difference decom-

position

Piccarreta [2008] showed that, given πL and πR, the splitting rule (9) evaluates all the exclusive splits

as equivalent. Consider for example splits s1 and s2 reported in Table 1: the Agresti rule does not

allow us to distinguish between the two splits even if split s2 seems to be preferable to s1 because

of the lower dispersion of individuals among the categories in the left subnode. Compare now splits

s1 and s3: the Agresti rule favors again the exclusive split s1, but actually s3, in spite of a slight

overlapping between the subnodes, appears to be better. These examples underline a weakness of

the Agresti splitting criterion: given πL and πR, (9) does not give the right weight to the dispersion

within subnodes, a relevant dimension when classifying individuals among the categories of an ordinal

response. Another flaw regards the evaluation of the degree of overlapping (transvariation) between

the subnodes obtained by the split. Compare for instance splits s4 and s5 reported in Table 1: the

Agresti rule evaluates these splits as equivalent and hence it is not able to capture two main differences.

First, as above noticed, it does not account for the different dispersion in the left subnode, that is

lower for s4 than for s5. Secondly, the degree of overlapping appears to be higher for s5 than for s4
because the 10% left-subnode individuals ”entering” in the right subnode distribution lie in a higher

level for s5 than for s4.

The main idea of this paper is to overcome the drawbacks of the Agresti splitting criterion

by introducing a new rule based on the same logic used in the decomposition by subgroups of one

the most used and widespread inequality measures, the Gini’s concentration ratio. Details of such a

decomposition can be found in Dagum [1997] and in Costa [2008] for the case of two subgroups.

As shown in section 2, the dispersion measure (2) is equivalent to the gmd (5) computed when

the ordered categories y1 ≺ . . . ≺ yk are replaced by the set of integers 1, . . . , k.
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The gmd of the parent node can be rewritten as follows:

∆(p) =
1

N2

�

j

�

i

|j − i| nj ni

=
1

N2

�

j

�

i

|j − i| (njL + njR) (niL + niR)

=
1

N2




�

j

�

i

|j − i| njLniL +
�

j

�

i

|j − i| njRniR +
�

j

�

i

|j − i| njLniR

+
�

j

�

i

|j − i| njRniL





= ∆LLπ
2
L +∆RRπ

2
R +∆LRπLπR +∆RLπRπL

= ∆LLπ
2
L +∆RRπ

2
R + 2∆LRπLπR(10)

where∆ LL = ∆ (pL) and∆ RR = ∆ (pR) are the gmd evaluated within the two subnodes distributions,

respectively, and

∆LR =
1

nL nR

�

j

�

i

|j − i| njLniR =
�

j

�

i

|j − i| pjLpiR = ∆RL(11)

is the mean difference between the left and the right subnodes as introduced by Dagum [1980].

The first two terms in (10) are the weighted sum of the offspring dispersion measure with weights

given by the corresponding squared proportion of cases while the third term is the mean of the nLnR

differences between the observation of the two groups. This latter term can be further decomposed as

in the following (see Gini [1916]). Denote with

µt =
1

nt

�

j

j njt, t ∈ {L,R}(12)

the arithmetic means of the two offspring distributions and suppose, without loss of generality, that

µL > µR. It can be easily shown that:

nLnR∆LR =
�

j

�

i

|j − i| njLniR

= (µL − µR)nLnR + 2
�

j

�

i>j

(i− j)njLniR

= (µL − µR)nLnR + 2TLR(13)

where TLR denotes the sum of the transvariations (with respect to the arithmetic mean) between

the two offsprings. In other words there is transvariation between two individuals, one from each

distribution L and R, if (given µL > µR) the ordering between the corresponding categories on the

response, has opposite sign of the one between the arithmetic means. The amount of this transvariation

is measured by the difference |i−j|, i.e. the number of categories existing between the two individuals.

According to (10) and (13) we thus obtain a three terms additive decomposition of the parent’s node

gmd:

∆(p) = ∆LLπ
2
L +∆RRπ

2
R + 2 (µL − µR)πLπR +

4TLR

nLnR

πLπR.(14)

In the case µL < µR the term TLR is evaluated as
�

j

�

i>j

(i− j)niLnjR
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and the gmd decomposition is given by

∆(p) = ∆LLπ
2
L +∆RRπ

2
R + 2 (µR − µL)πLπR +

4TLR

nLnR

πLπR.(15)

By defining

TLR =

� �
j

�
i>j(i− j)njLniR, if µL > µR�

j

�
i>j(i− j)niLnjR, if µL < µR

the following unique expression for the gmd decomposition is thus obtained:

∆(p) = ∆LLπ
2
L +∆RRπ

2
R + 2 |µR − µL|πLπR +

4TLR

nLnR

πLπR.(16)

Our proposal is then to select the split that minimizes both∆ LLπ2
L
+ ∆RRπ2

R
, accounting for the

dispersion within the subnodes, and 4TLR
nLnR

πLπR, penalizing the split for the amount of transvariation

between the subnodes. This goal is achieved by adopting the following splitting criterion:

C∆,T (s) = πLπR |µR − µL|(17)

i.e. by selecting the split that maximizes the weighted absolute difference between the subnodes arith-

metic means, with weight given by the so called anti-end-cut factor πLπR, that forces the criterion to

prefer splits resulting in subnodes of similar size. Contrary to the Agresti splitting rule, criterion (17)

enables to distinguish between ordinal exclusive splits because of the presence of the dispersion mea-

sures of the subnodes (even if the transvariation term vanishes). Moreover, the use of TLR, measuring

the amount rather than the number of transvariations, can overcomes the above drawback of giving

equivalent evaluation to all transvarying pairs, regardless of the number of categories they transvary

for.

5 Application: the Eurobarometer survey.

In order to prove the capability of the proposed method (17), we apply it to the Eurobarometer survey

and we compare the results with those of the Gini ordinal method (2) and Agresti method (9). The data

regards the Standard Eurobarometer 71.2 2. This survey was conducted between May and June 2009

in 31 states of the European community for a total of 29,768 respondents living in European countries

and older than 15 years. As part of the analysis we consider as explanatory variables the answers

relating to economic and social situation and some variables about socio-demographic respondents

informations (that is sex, age,living area, country etc). The dependent variable is referred to the

overall satisfaction of the current life of the respondent. This variable has 4 ordered categories of

levels: ”Very satisfied”, ”Fairly satisfied”, ”Not very satisfied” and ”Not at all satisfied”. The analysis

shows very encouraging results as reported in Table 2.

Table 2: Comparation among the different method

Method n. splits n. variables Misclassification rate

New Method 12 7 0.38435

Agresti 11 6 0.38531

Nominal Gini 16 10 0.38441

Based on the obtained results, the best method in terms of simplicity and forecasting ability is the

tree based on the minimization of (17).

2
The data can be downloaded on the website http://zacat.gesis.org/webview/index.jsp
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