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Introduction 
A primary focus of seismic analysis is the accurate modeling of the geologic composition of the 

Earth’s crust and upper mantle as well as the speed with which seismic waves travel through these layers.  
Velocity modeling is a multi-objective optimization problem with competing objectives typically approached 
via a single or joint inversion of objective(s), resulting in a single estimated velocity structure.   

Stochastic modeling of the velocity structure is a relatively new approach in seismology, and multi-
objective genetic algorithms offer a stochastic forward modeling approach, resulting in a set of plausible 
solution velocity models.  Benefits include the ability to increase the number of objectives at relatively low 
cost and to incorporate multiple types of data including magnetotelluric and gravity data; this is difficult to 
accomplish with a joint inversion.  

When using a genetic algorithm one choice to be made is whether to represent the velocity model in 
terms of a binary digit, as has been done historically, or as a real-valued variable.  We explore the how 
choice of a binary coding or real-valued representation of the velocity structure impacts the resulting models. 

Seismic Application 
Seismology is the study of how waves (surface waves, body waves, etc.) travel through the Earth.  

The velocity structure, describing the speed with which seismic waves travel, provides insight to the Earth’s 
dynamics, allowing short-term and long-term risk assessment for future 
earthquakes.  Each geologic layer has its own velocity (in km/s), 
correlated with the velocity in the adjacent geologic layers and varying 
with layer depth (Figure 1).  The velocity model is a solution vector of 
velocity estimates for each layer in the region of interest.  In this 
paper, the region of interest is the Archaean Kaapvaal Craton found in 
southern Africa.  

In general, data come from seismic events (typically earthquakes 
or explosions) as travel times from the source event to the recording 
seismograph, as the seismic waves pass through the heterogeneous 
crust and upper mantle.  Waves traveling around the surface of the 
Earth get dispersed into different frequencies, traveling at different 
speeds.  A surface wave dispersion curve plots absolute velocities 
(averaged across geologic layers) by wave frequency (Figure 2).  De-
convolving the vertical and horizontal ground motion from a wave 

Figure 1: A typical velocity 
structure 
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isolates where seismic waves convert from compressional to shear waves, indicating a change in the velocity 
structure.  These de-convolutions, classified by wave frequency and travel path, are plotted as a function of 
time, which is termed a receiver function.  A receiver function (Figure 2) highlights sharp contrasts in 
velocity beneath the seismograph location, relative to the first signal that arrives.  Four receiver functions 
were used in these analyses.  The first (i.e. top) and second receiver functions measured higher frequency 
waves than the third and fourth receiver functions.  The first and third receiver functions traced wave paths 
closer to the source whereas the second and fourth receiver functions traced wave paths that were further 
from the source.   

In the multiple objective optimization problem of modeling the velocity structure, the objective 
functions are the minimization of the deviation of the estimated surface wave dispersion curve and the 
receiver functions from the observed data.  The combination of these multiple objectives can determine the 
layered velocity structure (Julià et al. 2000). 

The Genetic Algorithm 
The genetic algorithm (GA) is a stochastic search and optimization method based on the notion of 

evolution, in which initial solutions evolve toward the ideal solution (De Jong et al., 1997).  The algorithm 
begins with an initial population of individuals (i.e. initial velocity models) in which each initial velocity 
model ܆௜

଴, ݅ ൌ 1, … ,  is randomly generated.  At each generation (i.e. iteration), new individuals are ,ߤ
obtained.  Using terminology from evolution, the current individuals mate (via recombination) and mutate 
to form the next generation.  In binary tournament selection, with some probability, two velocity models 
(now called parents) are selected and with a crossover probability pc, two new individuals (called children or 
offspring) are calculated from the parent solutions, as described below.  With probability 1-pc, the two 
parent solutions enter into the next generation unchanged.  Further, with probability pm, the children mutate.  
In the case of velocity modeling, the velocity parameter at any one layer may be changed by randomly 
moving its current numerical value closer to the upper or lower bound of plausible values (provided by the 
user).  The mating and mutation ensure that a diverse population of velocity models is evaluated, enhancing 
the efficiency of the search mechanism.   

In each generation t, the individual models ( )t
iX , i=1,…, μ, are used to produce a synthetic surface 

wave dispersion curve and synthetic receiver functions to be compared to the observed data.  The fitness or 
objective functions,      ( ) ( ) t t obs

k ii if g gX X X , k=1,2,…n, (summed over j=1,2,…,l layers) are 
assessed using Pareto dominance and optimality.  A velocity model solution ( )t

iX is considered better or 
dominant over another solution ( )


t

iX if    ( ) ( )
t t

k i k if fX X , for all k, and, for one objective function,

   ( ) ( )
  t t

k i k if fX X .   
The Pareto optimal solution is the set of all solutions that are non-dominated.  Ranking models 

relative to the Pareto optimal front, the best models are selected to be parents for the next generation.  A 
new generation is created by recombination and mutation and the best picked from these. The process is 
continued until the Pareto optimal front no longer changes.  This version of the GA is called the Non-
dominated Sorting Algorithm II (NSGA-II, Deb et al., 2002). 

Comparison of Binary and Real-Valued Representations 
A principle decision to be made when using GA, including the NSGA-II algorithm, is whether to 

represent the solution (e.g. a velocity model) in binary format or using a real-valued representation.  GA 
were initially developed based on a binary representation and expanded to real-valued representation later.  
The choice of representation impacts several aspects of the algorithm as well as the results.  Most published 
work applying genetic algorithms to geophysical modeling, including velocity modeling, use binary 
representation.  Our interest here is whether the results differ based on the choice of representation. 

 
Generation of the initial population 

Using binary coding, the velocity in each layer (as in Figure 1) is represented by a 5 bit binary digit 
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(termed a chromosome).  The range of velocities for our model is 3 to 6.2 km/s; a 5 bit chromosome can 
represent 32 possibilities and thus velocity estimates at a specific layer can change by a step size of 0.1 km/s.  
In Figure 1, the velocity at the top layer at the crust is 5.1 km/s and is represented by 10101.  The initial 
model randomly draws each bit from a Bernoulli distribution with p=0.5.  In the real valued representation, 
the velocity at each structure is randomly drawn from a Uniform distribution with range 3 km/s to 6.2 km/s.   
 
Recombination and Mutation 

In the recombination phase, a proportion ݌௖ of pairs of parents are randomly selected from the 
population for mating; the remainder passes unchanged to the next generation.  Recombination and 
mutation are calculated differently for binary and real-valued representations.  In the real-valued 
representation, the children are generated as an average of the parents (indexed by i) weighted towards the 
better solution; each layer j is calculated as: 

 
( ) ( ) ( ) ( )

1, 1,( 1) ( 1)
1,,  

2 2
    


 

   
t t t t

ij iji j i jt t
ij i j

x x x x
x x  

where ߙఉ is a random weighted distance from the more dominant parent model.  The result is a model 
with velocities at each layer bounded by the parent velocities at that layer.   

In the binary case the recombination is performed within the chromosome by “crossing over” bits.  
The child begins with the same digits as one of the parent.  At randomly selected bit “b”, the child crosses 
over to the other parent to obtain the remaining digits.  For example, for parents 01101 (i.e. 4.3 km/s) and 
11000 (i.e. 5.4 km/s) and a randomly selected crossover point of 3, the child’s velocity is calculated by 
crossing over the last 3 digits, producing 01000 (3.8 km/s).  Unlike the real-value representation, binary 
recombination can and does produce velocities outside the parents’ range.     

Mutation is used to diversify the population to prevent getting caught in local minima.  Mutation is 
essential for real-value representation and useful for binary representation.  A proportion ݌௠ of the children 
have every layer perturbed.  In binary coding, the method is similar to recombination in that a portion of 
each chromosome is randomly replaced with digits from a Bernoulli distribution with probability p=0.5.  
The real-value representation is a random perturbation of the layer value. 

Results 
We have applied the NSGA II algorithm to the velocity model beneath the BOSA station on the 

Kaapvaal Craton in southern Africa.  The velocity model obtained via a joint inversion (Kgaswane et al., 
2009) is used as a comparison. Consistent with the Kgaswane model, we modeled the velocity at each of 53 
layers. The population size in all runs was μ=50.  The recombination probability (pc) and the mutation 
probability (pm) were varied as summarized in Table 1.  
 
Table 1: Summary of conversion results for binary and real-valued representations 

 ௖݌ ௠݌

Binary Representation Real-Valued Representation 

Number of Iterations 
Until Convergence 

Percent of 
Reasonable  

Objective Functions

Number of Iterations 
Until Convergence 

Percent of 
Reasonable  

Objective Functions 

0 0.3 4 33% 9 68% 

0 0.5 8 16% 7 72% 

0 0.8 21 80% 16 70% 

0 0.9 34 50% 17 64% 

0.02 0.9 75 90% 23 74% 

0.05 0.3 54 98% 16 14% 

0.05 0.5 No convergence 20 78% 

0.05 0.8 85 96% 23 72% 

0.05 0.9 75 94% 12 68% 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS025) p.4464



10080604020

4.8

3.6

2.4

1.2

0.0
10080604020

4003002001000

4.8

3.6

2.4

1.2

0.0
6004503001500

Receiver Function 1

Receiver Function Misfits

S
u

rf
ac

e 
W

av
e 

D
is

p
er

si
on

 C
u

rv
e 

M
is

fi
t

Receiver Function 2

Receiver Function 3 Receiver Function 4

Binary
Real

On average, the real valued representation methods converged 2.6 times faster than the binary coding, 
particularly in the presence of mutation.  This is not unexpected as the binary coding has five times as many 
parameters to estimate.  In a 53 layered model, a five bit representation requires 265 estimated values 
whereas the real-valued representation only requires 53 values.  

Within each solution set of 50 models, not all velocity models correspond well to the observed surface 
wave dispersion curve or the receiver functions.  These are the standard comparisons used by geophysicists 
to evaluate the goodness of fit for estimated velocity models.  Such measures evaluate the entire velocity 
model (as opposed to individual layers) and models with large misfits (objective functions) between the 
model-predicted and observed data are suspected to be poor and not trustworthy.  Examples of large misfits 
are show in Figure 2b, c.  These examples also demonstrate that velocity modeling incorporates competing 
objectives, for which GAs are well-suited. 

 

 
For both the binary and real-valued 

representations, adding a small probability of 
mutation improved the percent of models with 
reasonable objective functions, possibly because a 
larger portion of the model space is searched with 
mutation.  Further, binary representation yielded 
more reasonable objective functions than the real-
valued representations.  This can be best seen by 
the final Pareto optimal sets (Figure 3).  The 
Pareto fronts from a representative run (crossover 
probability of 0.90, mutation probability of 0.05) 
show that the binary coding produces a more 
compact set of objective functions, particularly 
with respect to the surface wave dispersion curve, 
representing more accurate velocity estimates 
(averaged across the 53 geologic layers modeled).  
Large values for the surface wave dispersion 

objective function for the real-valued representation 
suggests a bias in estimated velocities.  Receiver 
functions 1 and 2, describing the high frequency 
waves, favor the real-value representation, with the 

largest misfit functions observed for binary models.  Receiver functions 3 and 4 favor the binary 
representation.  In particular, receiver function 3 (low frequency, close paths) reveals several extreme real-
valued objective function values. 

Figure 3: Comparison of the objective functions 
corresponding to the final Pareto optimal set of 
velocity models for the binary coding and real-
valued representations (pc=0.9, pm=0.05) 

(a) (b) (c)

Figure 2: Three sets of four receiver functions and one surface wave dispersion curve: (a) both 
the estimated receiver functions and the surface wave dispersion curve match the obs-
erved data well; (b) the surface wave dispersion curve indicates the velocity model over-
estimated the observed velocity, though the receiver functions fit well; (c) the receiver functions
indicate excessive noise, suggesting estimated arrival times may be inaccurate. 
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Finally, the set of 50 solutions in the Pareto optimal set are plotted by depth (km).  This comparison 
shows layer-by-layer variability in velocity estimates.  Figure 4 shows an overlay of the 50 solutions using 
a crossover probability of 0.9 and a mutation probability of 0.05, for both the (a) binary coding and (b) real-
valued representations.  The velocity structures are compared to the Kgaswane velocity model (shown as a 
line), which is the currently accepted model for the region.  A more compact distribution is observed for the 
real-valued representation; a bias towards higher velocities is evident, consistent with the large surface wave 
dispersion curve misfit functions shown in Figure 3.  The distribution of solutions from the binary 
representation shows a much wider and more uniform spread. 

 

Figure 4: Distribution of velocity models from the Pareto optimal set for (a) binary and (b) real-
valued representation (pc=0.9, pm=0.05).  The solid line is the Kgaswane model. 

Discussion and Summary 
Genetic algorithms applied to problems with a continuous model space either incorporate a binary 

coding of the real-valued measures or directly use the real-valued variables.  Genetic algorithms used in the 
geosciences often employ a binary coding (e.g. Sambridge and Kennett, 1996; Mackenzie et al., 2001; Dal 
Moro and Pipan, 2007).  Our question is how the choice of binary coding or real-valued representation 
impacts the resulting Pareto optimal solution set.  Preliminary results suggest that the real-valued 
representation converges faster than the binary coding, and that a small proportion of mutation is 
advantageous.   

Comparisons based solely on the objective functions suggest that the binary coding is preferable.  In 
the real-valued representations, large misfits are observed between the model-predicted and observed surface 
wave dispersion curve and receiver functions.  Commonly, such large misfits would indicate that the 
corresponding velocity model is not physically plausible.  For example, misfit errors observed with receiver 
functions as in Figure 2c suggest a rapid rate of change in velocity not physical observed in practice.  
However, when examining the velocity models in the Pareto optimal solution, as in Figure 4, the real-valued 
representation shows less variability in estimated velocities at each layer.  In fact, the variability in 
velocities resulting from the binary coding is too large to yield usable results.   

Despite being less than when using binary coding, the within-layer variability in estimated velocities 
using the real-valued representation remains too great to interpret the geologic structure.  Additional 
constraints placed on the largest surface wave dispersion curve misfits may improve the precision in 
estimating the true velocities. 

  Binary genetic algorithms limit the resolution by forcing the parameters into 5-bit (or similar) 
chromosomes.  Given it is not uncommon to have 30 or more geologic layers, the binary coding increases 
the number of parameters to be estimated and computation time.   
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