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RÉSUMÉ (ABSTRACT)

L’entropie marginale et le taux d’entropie de Shannon des châınes de Markov à temps discret ou

continu sont des fonctions régulires des coefficients de leur matrice de transition ou générateur. Des

estimateurs par branchement peuvent ainsi être déduits des estimateurs de ces coefficients. Pour les

entropies généralisées du type Rényi ou Tsallis, une expression exacte du taux d’entropie est obtenue

avant d’être estimée, à l’aide d’outils de théorie des opérateurs. Les châınes de Markov considérées

incluent les espaces d’état binaires, finis et dénombrables, les suites indépendantes et identiquement

distribuées (i.i.d.), et les châınes paramétriques. Tous les estimateurs construits ont de bonnes pro-

priétés asymptotiques, de lois asymptotiques totalement explicites. Pour les suites i.i.d., un principe

de grande déviations impliquant l’entropie relative d’une loi escorte de la suite est énoncé.

The Shannon marginal entropy and entropy rate of ergodic Markov chains either with discrete

or continuous time, are smooth functions of the coefficients of their transition matrices or genera-

tors. Plug-in estimators of entropy can thus be constructed from estimators of these coefficients. For

generalized entropies such as Rényi or Tsallis, a closed form expression of the entropy rate has to be

obtained prior to estimation by means of operator theory methods. Considered Markov chains include

binary, finite or denumerable state spaces, independent identically distributed (i.i.d.) sequences and

parametric chains. All the constructed estimators behave asymptotically well, with limit distributions

generally depending on explicit parameters. Moreover, for an i.i.d. sequence, a large deviation principle

holds, involving the relative entropy of an escort distribution of the sequence.

1 Introduction

Shannon (1948) adapted to the field of probability the concept of entropy introduced by Boltzmann

and Gibbs in the XIX-th century by defining the entropy of a distribution P taking values in a

countable set E as

(1) S(P ) = −
∑
i∈E

P (i) logP (i),

with the convention 0 log 0 = 0. Entropy measures the randomness or uncertainty of a random

phenomenon. It now naturally applies to information theory and statistical mechanics, and to many

other fields such as finance, statistics, cryptography, physics, artificial intelligence, etc.

Rényi (1960) proposed a one parameter family of entropy functionals extending Shannon entropy

to new applications. Since then, many different generalized entropies have been defined to adapt to

many different fields. Among them, Tsallis or Sharma-Mittal entropies are instances of what Menéndez

et al (1997) call (h, φ)-entropy. Precisely, we set

(2) Sh(y),φ(x)(P ) = h

(∑
i∈E

φ
(
P (i)

))
for any measure P on a countable space E such that the quantity is finite. Note that Rényi entropy

is obtained for hs(y) = (1 − s)−1 log y and φs(x) = xs with s > 0, while Tsallis entropy involves
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the functions hr(y) = (r − 1)−1(1 − y) and φr(x) = xr for some positive r 6= 1. Shannon entropy is

obtained for s tending to 1 and for r = 1. More generally, Sharma-Mittal entropies are obtained for

hs,r(y) = (r − 1)−1[1− y(1−r)/(1−s)] and φs(x) = xs.

Entropy can be extended to a discrete or continuous-time stochastic process X = (Xt) by

considering entropy for its marginal distributions, that is of the distributions of Xt, for t ∈ N or R+.

If the process is stationary, these distributions are all equal to some P , and the marginal entropy is

S(P ). When the process is ergodic, its asymptotic behavior is described by some unique probability

distribution, say P again; then, S(P ) measures the information of the process at equilibrium. In case

X is both stationary and ergodic, its marginal and limit distributions are equal.

The entropy rate of a discrete time process X = (Xn)n∈N is usually defined as its entropy per

unit time. For an i.i.d. sequence, Shannon and Rényi entropy rates are well-known to be the entropy

of the marginal distribution. This is due to additivity properties which are lost for non-extensive

systems to which Tsallis entropy fits better; see Tsallis (2010). The Shannon entropy rate of an

ergodic homogeneous Markov chain X = (Xn)n∈N with a countable state space E, transition matrix

P = (P(i, j))i,j∈E and stationary distribution P (such that PP = P ) is

(3) H(X) = H(P) = −
∑
i∈E

P (i)
∑
j∈E

P(i, j) log P(i, j).

Shannon (1948) proved the convergence of the time average 1
n logP(X0 = i0, . . . , Xn−1 = in−1) to

H(X), a limit which defines the Shannon entropy rate of any discrete time stationary ergodic process.

For generalized entropies, the entropy rate of the sequence is similarly defined as Hh(y),φ(x)(X) =

limn→∞
1
nSh(y),φ(x)(X0, . . . , Xn−1), where Sh(y),φ(x) is given in (2).

A natural equivalent of the entropy rate for a continuous-time stochastic process X = (Xt)t∈R+

comes from considering the limit of the time average 1
THT (X), with HT (X) = −

∫
R+
fX(T )

log fX(T )
dµ

for T > 0, where the distribution PX(T )
of X(T ) = (Xt)0≤t≤T is supposed to be dominated by µ, with

density fX(T )
. Bad Dumitrescu (1986) proved that the entropy rate exists for any ergodic continuous-

time Markov chain with finite state-space E, infinitesimal generator A = (A(i, j))(i,j)∈E2 and station-

ary distribution P (such that PA = 0), is given by

(4) H(X) = H(A) = lim
T→+∞

1

T
HT (X) = −

∑
i∈E

P (i)
∑
j 6=i

A(i, j) log A(i, j) +
∑
i∈E

P (i)
∑
j 6=i

A(i, j).

In this review paper, we will consider first in Section 2 the estimation of Shannon entropy

for an i.i.d. sequence with a stress on a large deviation principle. We will address the problem of

estimating generalized entropy for discrete time parametric Markov chains, precisely marginal entropy

in Section 3.1, and entropy rate in Section 3.2. Finally, we will estimate Shannon marginal entropy

and entropy rate for continuous-time Markov chains in Section 4.

2 Estimation of Shannon entropy for i.i.d. sequences

For an i.i.d. sample of some distribution P , the estimator of entropy obtained by plugging the empirical

estimator of P into (1) has been considered in the 50’s; see Harris (1977) and the references therein.

A complete proof of its asymptotic properties is given in Girardin and Regnault (2011), where the

following large deviations principle is also proven to hold.

Theorem 1 Let X = (Xn)n∈N be an i.i.d. sequence of observations of a distribution P on a finite

state space E. Let P̂n(i) = 1
n

∑n
k=1 11(Xk=i), denote the empirical estimator of P (i). Then S(P̂n) is a

strongly consistent estimator of Shannon entropy S(P ). Moreover:
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• if P is not uniform, then
√
n[S(P̂n)− S(P )] is asymptotically normal with variance

∑
i∈E∗

P (i)[1− P (i)]

(
log

P (i)

[1−
∑

j∈E P (j)]

)2

;

• if P is uniform, say P = U , then 2n[S(P̂n) − S(U)] converges to
∑

i∈E βiYi, where all Yi are

independent χ2(1)-distributed random variables and all βi ∈ R.

The sequence of estimators S(P̂n) satisfies a large deviations principle with good rate function

IS(s) =


−s− log(p) if 0 ≤ s ≤ logm,

K(EkP |P ) if log(m) < s ≤ log(|E|), with k > 0 such that S(EkP ) = s,

+∞ otherwise,

where m = |{i ∈ E : P (i) = p}| is the number of modes of P , taking value p = maxi∈E P (i), the

distribution EkP with EkP (i) = P (i)k/
∑

j∈E P (j)k, is the k-escort distribution of P with Kullback-

Leibler information relative to P given by K(EkP | P ) =
∑

i∈E E
k
P (i) log[EkP (i)/P (i)].

To establish a closed-form expression for k as a function of the entropy level s seems to be a difficult

task, whatever be the cardinality of E. As an alternative, the original rate function IS can be re-

placed by an explicite approximation in all applications involving large deviations principles, without

significative loss of accuracy; see Girardin and Regnault (2011) for details.

3 Generalized entropies for discrete time Markov chains

Very few results exist in the literature concerning estimation of entropy for non i.i.d. sequences,

especially Markov chains, even less concerning the estimation of generalized entropy functionals.

We suppose that the transition probabilities of the Markov chain depend on an unknown pa-

rameter θ ∈ Θd, where Θ is an open subset of some Euclidean space and d ≥ 1. Billingsley (1961)

shows that a strongly consistent maximum likelihood estimator θ̂n of θ exists, such that
√
n(θ̂n − θ)

is asymptotically centered and normal, with variance matrix σ−1(θ) which is the inverse of Fisher’s

Information of X, under a set of regularity assumptions too long to be given here. Since the transition

probabilities of the chain depend on θ, its stationary distribution P also depends on θ, say through

P [θ], and it is natural to consider the plug-in estimator Sh(y),φ(x)(P [θ̂n]) of Sh(y),φ(x)(P [θ]).

3.1 Marginal entropy

Ciuperca et al (2011) establishes the good asymptotic properties of the plug-in estimator of the

marginal entropy of a parametric Markov chain, by means of operator theory tools. The proof

is based on the so-called quasi-power property. In dynamical systems theory, the Dirichlet series

Λn(s) =
∑

ik∈E P
n(i0, . . . , in)s is a central tool for studying general sources, in pattern matching

or in the analysis of data structures. For an i.i.d. sequence with non-degenerated distribution P

over a finite set E, it can be simply written as the n-th power of an analytic function, precisely

Λn(s) =
[∑

i∈E P (i)s
]n
. Similarly, for more general random sequences, the quasi-power property says

that Λn behaves like the n-th power of some analytic function, precisely Λn(s) = c(s) ·λ(s)n−1 +Rn(s)

with |Rn(s)| = O
(
ρ(s)n−1λ(s)n−1

)
, where c and λ are positive analytic functions for s > σ0, and λ is

strictly decreasing with λ(1) = c(1) = 1, and ρ(s) < 1.

Theorem 2 Let X = (Xn)n∈N be an ergodic homogeneous finite discrete time Markov chain satisfying

the quasi-power property. If Billingsley (1961)’s set of asssumptions is satisfied, then the estimator

Sh(y),φ(x)(P [θ̂n]) is strongly consistent.
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If, moreover, the differential DθSh(y),φ(x)(P [θ]) is not null, then
√
n
[
Sh(y),φ(x)(P [θ̂n])−Sh(y),φ(x)(P [θ])

]
is asymptotically normal with variance

[
DθSh(y),φ(x)(P [θ])

]t
σ−1(θ)

[
DθSh(y),φ(x)(P [θ])

]
.

All finite chains are parametric chains, since the transition probabilities are functions of a number

d of parameters equal or less than |E|(|E|−1). For a finite-state ergodic Markov chain, the asymptotic

normality of the plug-in empirical estimator of Shannon marginal entropy S(P̂n), is established in

Ciuperca and Girardin (2007), thanks to the ergodic theorem for Markov chains and delta method.

Different schemes of observations are considered, according to whether one long trajectory or several

short trajectories are observed. Due to the presence of the sum over all the states in the expression

of the entropy, and to the dependencies of the
∑n

k=1 11(Xk=i) for different i, the asymptotic variance

S(P̂n) cannot be obtained explicitely.

3.2 Entropy rate

Rényi entropy rate is proven in Rached et al (1999) to be hs = (1− s)−1 log λ(s) for any finite state-

space E, where λ(s) for s > 0 is the unique dominant eigenvalue of the perturbated transition matrix

Ps = (P(i, j)s)i,j∈E . Note that Shannon entropy rate given in (3) is equal to the derivative h = −λ′(1).

In Ciuperca et al (2011), the (h, φ)-entropy rates of discrete time random sequences – especially

Markov chains, taking values in countable spaces, are computed and estimated by applying operators

theory tools, thanks to the quasi-power property. When the (h, φ)-entropy rate is neither null nor

infinite, only two cases happen : either, the entropy rate is equal to Shannon entropy rate, or it

is a simple function of Rényi entropy rate. Therefore, only the estimation of Shannon and Rényi

entropy rates is to be detailed. Let us define for a parametric Markov chain the plug-in estimators

h(θ̂n) = −λ′(1; θ̂n) of Shannon entropy rate H(X) = −λ′(1; θ), and hs(θ̂n) = (1 − s)−1 log λ(s; θ̂n) of

Rényi entropy rate Hs(X) = (1− s)−1 log λ(s; θ).

Theorem 3 Let X = (Xn)n∈N be an ergodic homogeneous countable Markov chain satisfying the

quasi-power property. If Billingsley (1961)’s set of assumptions is satisfied, then the estimators h(θ̂n)

and hs(θ̂n) for s 6= 1, are strongly consistent and
√
n[h(θ̂n) − H(X)] and

√
n[hs(θ̂n) − Hs(X)] are

asymptotically normal with respective variances

Σ1 =

{
∂

∂θ
[−λ′(1; θ)]

}t
σ−1(θ)

∂

∂θ
[−λ′(1; θ)] and Σs =

1

(1− s)2

{
∂

∂θ
λ(s; θ)

}t
σ−1(θ)

∂

∂θ
λ(s; θ).

All finite chains are parametric chains, hence their entropy rate can be estimated as above.

Alternatively, the plug-in estimator constructed from the empirical estimator

(5) P̂(i, j) =

∑n−1
m=0 11Xm=i,Xm+1=j∑n

m=0 11Xm=i

obtained from one long trajectory can be considered. For a finite-state ergodic Markov chain with

non uniform transition matrix, the asymptotic normality of H(P̂) is established in Ciuperca and

Girardin (2007), thanks to the ergodic theorem for Markov chains and delta method. Different schemes

of observations are also considered. Again, due to the presence both of the sum over all the states

in the expression of the entropy and of dependencies of the P̂(i, j), the asymptotic variance of H(P̂)

cannot be obtained in general. For a Markov chain X with a two-state space, say E = {0, 1}, the

asymptotic properties have been fully established in Girardin and Sesboüé (2009). Indeed, the entropy

rate (3) of the chain can be written

(6) H(X) = H(p, q) =
q

p+ q
Sp +

p

p+ q
Sq,
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where P(0, 1) = p and P(1, 0) = q, so that P (0) = q/(p+ q) and P (1) = p/(p+ q), with Sp =

−p log p− (1− p) log(1− p) and Sq = −q log q − (1− q) log(1− q).
Replacing in (6) p and q by their estimators p̂n and q̂n obtained by (5), we get the plug-in

estimator of the entropy rate of the chain H(p̂n, q̂n).

Proposition 1 Let X = (Xn)n∈N be an ergodic homogeneous two-state Markov chain. The plug-in

empirical estimator H(p̂n, q̂n) of the entropy rate H(X) is strongly consistent. Moreover:

• if (p, q) 6= (0.5, 0.5), then
√
n[H(p̂n, q̂n) − H(X)] is asymptotically normal with variance

γ20 [∂11H(p, q)]2 + γ21 [∂12H(p, q)]2, where

γ20 =
p(1− p)
P (0)

=
p(1− p)(p+ q)

q
and ∂11H(p, q) =

q

(p+ q)2
[Sq − Sp]−

q

p+ q
log

p

1− p
,

γ21 =
q(1− q)
P (1)

=
q(1− q)(p+ q)

p
and ∂12H(p, q) =

p

(p+ q)2
[Sp − Sq]−

p

p+ q
log

q

1− q
;

• if (p, q) = (0.5, 0.5), then 2n[H(p̂n, q̂n)−H(X)] converges in distribution to a χ2(2)-distribution.

4 Shannon entropy for continuous time Markov chains

The empirical estimator of the generator A = (A(i, j))(i,j)∈E2 of a continuous time Markov chain X

(also called pure jump Markov process) is

(7) ÂT (i, j) =

∑NT−1
t=0 11Xm=i,Xm+1=j∫ T

0 11Xt=idt
, for j 6= i, and ÂT (i, i) = −

∑
j 6=i

ÂT (i, j),

where NT is the number of jumps of the process in the time interval [0, T ]. Albert (1962) showed

that ÂT is strongly consistent and that
√
T (ÂT −A) is asymptotically normal with diagonal variance

matrix with entries Σ2
A(i, j) = A(i, j)/P (i) for i 6= j. He also computed the stationary distribution P

of the process, such that PA = 0, through

(8) P (i) = P [A](i) =
det A(i,i)∑
j∈E det A(j,j)

, i ∈ E,

where A(i,i) is the (|E| − 1)2-matrix obtained from A by canceling both i-th row and i-th column.

4.1 Marginal entropy

Up to our knowledge, the only available results on the estimation of the entropy of continuous time

Markov chains are the following, proven in Regnault (2011). The asymptotic properties of the esti-

mator of the stationary distribution are a necessary first step.

Theorem 4 Let X = (Xt)t∈R+ be an ergodic continuous time Markov chain with finite state space E,

generator A and stationary distribution P .

The plug-in estimator P [ÂT ] of P obtained using (7) and (8) is strongly consistent and
√
T (P [ÂT ]−

P ) is asymptotically normal with variance Σ2
P = DP (A).Σ2

A.DP (A)t. This normal distribution is never

degenerated and the rate of convergence is optimal.

The plug-in estimator S(P [ÂT ]) of S(P ) is strongly consistent. Moreover:

• if the differential DS(A) is not null, then
√
T (S(P [ÂT ])−S(P )) is asymptotically normal with

variance Σ2
P = DS(A).Σ2

A.DS(A)t.

• if DS(A) = 0, then 2T [S(P ) − S(P [ÂT ])] converges in distribution to
∑

(i,j)∈E2∗ α(i,j)Y(i,j),

where all random variables Y(i,j) are χ2(1)-distributed and the α(i,j) explicitely depend on Σ2
A.
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Conditions on A are given in Regnault (2011) for the nullity of DS(A). Three situations of

observation are also discussed, according to whether one long trajectory is observed, or several short

independent trajectories are observed, or the process is observed at discrete times.

The case of a two-state process is studied in full details in Regnault (2009b). In particular, the

asymptotic variances take the form

Σ2
P =

2ab

(a+ b)4

(
1 −1

−1 1

)
and Σ2

S =
2ab

(a+ b)3

(
log

a

b

)2
,

where a = A(0, 1) and b = A(1, 0).

4.2 Entropy rate

For estimating the entropy rate H(X) given by (4) , it is natural to consider the plug-in estimator

H(ÂT ) using the empirical estimator ÂT given in (7). Its following good asymptotic properties are

proven to hold in Regnault(2009a). They derive from the fact that ĤT is a continuous mapping of

the strongly consistent estimator ÂT . The rest follows from the delta method.

Theorem 5 Let X = (Xt)t∈R+ be an ergodic continuous time Markov chain with finite state space

E, generator A and stationary distribution P . The plug-in estimator H(ÂT ) of the entropy rate H(X)

is strongly consistent. Moreover:

• if DH(A) =
(

∂H
∂A(i,j)(A)

)
is not null, then

√
T [H(ÂT )−H(X)] is asymptotically normal with

variance Σ2
H =

∑
i6=j A(i, j)[ ∂H

∂A(i,j)(A)]2/P (i).

• if DH(A) = 0, then 2T [H(ÂT ) − H(X)] converges in distribution to
∑

(i,j)∈E2∗ α(i,j)Y(i,j),

where all random variables Y(i,j) are χ2(1)-distributed and the α(i,j) explicitely depend on Σ2
A.

The case of a two-state process is studied in full details in Regnault (2009b). In particular,

Σ2
H =

(
[b− a− b log(ab)]2 + [a− b− a log(ab)]2

)
ab/(a+ b)3.
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A. Rényi (1960) Proc. 4th Berkeley Symposium on Mathematics, Statistics and Probability, pp.547-561.

C. E. Shannon (1948) Bell Syst. Tech. J., V27, I, pp. 379–423, II, pp.623–656.

C. Tsallis (2009) Introduction to Nonextensive Statistical Mechanics Springer, New York.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS060) p.5407


