
A comparison of sequential design procedures for
discriminating enzyme kinetic models

Elham Yousefi ∗

Department of Applied Statistics, Johannes Kepler University Linz, Austria

Abstract

Optimal designs for model discrimination often depend on the true model and its param-
eters. To proceed sequentially is one of the alternatives to tackle this dependence. In this
study we consider different sequential design strategies based on T -, Ds- and δ-optimality
for discriminating between different enzyme kinetic profiles and make a comparison between
their performances including one of the speed of their convergences.
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1 Introduction

Many optimal design procedures for discrimination (including T -optimal designs) depend on
which model is the true one and also on the parameters of that model and therefore are locally
optimum. One option to tackle this dependence is to apply a sequential procedure. Two rival
models are considered and it is often assumed that one of the presented models represents the true
physical mechanism under which the real data are generated (i.e., the data generating process).
Note that the situation becomes slightly more complex when we assume that neither of the two
models might be the true one. In the former sense the rival models are

yi = η0(θ0,xi) + εi, i = 1, . . . , N, and
yi = η1(θ1,xi) + εi, i = 1, . . . , N,

where θ = (θ1, . . . , θm)
T is the vector of m unknown parameters, θ ∈ Θ ⊆ Rm+ , Θ is a compact

set of admissible parameter values and x denotes the design variable(s). Further y denotes the
observation, η(θ,x) is the expected response, a nonlinear function of the unknown parameters
and the design variables and the random errors are i.i.d. with N (0, σ2).

2 Methodology

In order to conduct a sequential experiment, let N0 observations y0, . . . , yN0 of the response
be given. The goal is to find the next setting for the design variables (next trial) which best
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discriminates between two models. Utilizing the one which maximizes the residual sum of squares
of the incorrect model using the nonlinear least squares estimates from the runs completed until
then, yields the classic design strategy proposed in Hunter and Reiner (1965) and Atkinson and
Fedorov (1975).

1. Let an initial exact nonsingular design ξN0 with N0 observations yi, i = 1, . . . , N0 be given.
From these observations find the nonlinear least square parameter estimates of the models
(θ̂0N0 , θ̂1N0)

N0∑
i=1

(yi − ŷji)2 = inf
θj∈Θj

N0∑
i=1

(yi − ηj(θj ,xi))2 (ŷji = ηj(θ̂jN0 ,xi), j = 0, 1).

2. The next point xN0+1 is chosen as xN0+1 = argmaxx∈X

{
η0(θ̂0N0 ,x)− η1(θ̂1N0 ,x)

}2
.

3. The (N0 + 1)th observation is taken at xN0+1.

4. Steps 1 to 3 are repeated.

This sequential procedure will lead to an asymptotically T -optimal design. Such procedures are
of high importance when there is a predefined budget to perform experiments in application
phases. Sequential Ds-optimal designs could similarly be used for model discrimination, with
the difference that the first and the second stages in the above sequential strategy are changed
to fit the Ds-optimality criterion (Atkinson and Cox, 1974; Atkinson et al., 2007).

The last discrimination procedure investigated sequentially here is δ-optimality (Harman and
Müller (2020)), which is inherently a symmetric criterion based on linearizing the rival models
while considering flexible nominal parameter sets. We now need to alter just the second stage of
the above sequential strategy, while the other stages remains the same, as follows.

(yi)
N0+1
i=1 ≈ Fu(D)θu + au(D) + ε, au(D) = (ηu(θ̂u,xi))

N0+1
i=1 − Fu(D)θ̂u, u = 0, 1,

where D = (x1, . . . ,xN0+1) is an exact design of size N0 + 1, Fu(D) is the (N0 + 1)×m matrix
of partial derivatives at θ̂u, the respective nominal values (parameter estimates). According to
above notations, the linearized distance criterion is (see Harman and Müller (2020) for more
details)

δr(D) = inf
θ0∈Θ̂

(r)
0 ,θ1∈Θ̂

(r)
1

δ(D | θ0,θ1). (1)

δ(D | θ0,θ1) = ‖a0(D) + F0(D)θ0 − {a1(D) + F1(D)θ1} ‖,

where Θ̂
(r)
0 ⊆ Rm, Θ̂(r)

1 ⊆ Rm are called the flexible nominal sets. For a set D of all (N0+1)-point
designs, a design D∗ ∈ D will be called δ-optimal, if

D∗ ∈ argmax
D∈D

δr(D). (2)

Therefore Eq. (1) is computed for all designs of the size N0+1 (the design of size N0 so far plus
one candidate point, together of size N0 + 1). This is done for all points on the grid and the
design of size N0 + 1 called D∗ is chosen which maximizes the δ-criterion as in 2.
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3 Result

The above sequential methods are now applied to competitive and non-competitive inhibition
models, which are widely used in drug discovery (Copeland, 2005) and also investigated by many
authors in optimal design (Bogacka et al., 2011; Atkinson, 2012; Harman and Müller, 2020) and
are respectively defined as

y =
θV xS

θM

(
1 + xI

θK

)
+ xS

+ ε, (3)

y =
θV xS

(θM + xS)
(
1 + xI

θK

) + ε, (4)

where x = (xS , xI)
T denotes the pair of design variables. Atkinson (2011) suggested to combine

the above models to form an encompassing model as

y =
θV xS

θM

(
1 + xI

θK

)
+ xS

(
1 + (1−λ)xI

θK

) + ε, (5)

where the fourth parameter is 0 ≤ λ ≤ 1. λ = 1 corresponds to the competitive (Eq.(3)) and
λ = 0 to the non-competitive model (Eq.(4)) . X = [0, 30] × [0, 60] is the design space (grid of
all candidate points) used here and the search is over a grid of 31× 61 pair values of x.

The following plots show the results from the above sequential strategy, where the resulting
designs drawn as dark blue circles in Figure 1a are convergent cases for the T -optimal designs
when the competitive model is the data generator (with B = 500 number of iterations). As it
is observed from Figure 1a, it takes some iterations until the sequential designs start replicating
over those four points in dark blue. To observe how the approximate optimal discriminating
designs for these models and also their log transformed forms look like, one may refer to Yousefi
and Müller (2021). Some discrepancies between the optimal designs (compared to the ones in
Atkinson (2012)) occur due to differences in initial estimates and the design space. Furthermore,
areas of the circles are proportional to their approximate weights, proportion of replications at
each support point x. Figure 1b presents the residual standard error estimates of the competitive
model, which are completely compatible with their assumed null value σ̂ = 0.1553, drawn as the
red dashed horizontal line in the figure. The last Figure 1c shows the residual standard error
estimates of the noncompetitive model (basically the model not generating the observations),
which is deviating from its null value σ̂ = 0.2272, the red dashed horizontal line. Note that these
results confirm that the residual standard error estimates of the true model are unaffected by
the choice of design variable levels (Hunter and Reiner (1965)).

The following plots show the results from the Ds sequential procedure, where the interest is
in estimation of the discrimination parameter λ in the encompassing model (Eq. (5)). From
Figure 2a one can observe a reasonably high convergence rate of the Ds sequential method to
get toward the approximate Ds-optimal designs. This suggests that Ds is a fast sequential
procedure. Estimated residual standard errors of the encompassing model converge to their
null value σ̂ = 0.1553 after a few iterations, as may be observed from Figure 2b. Further, the
estimated λ in Figure 2c is mostly equal to one, the value for the competitive model.
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Figure 1: T -sequential procedure, the competitive model is the data generator. (a): sequentially constructed
designs, (b) and (c): residual standard error estimates of the competitive and noncompetitive models, respectively.
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Figure 2: Ds-sequential procedure, the competitive model is used to generate the obs. (a): sequentially con-
structed designs, (b): residual standard error estimates of the encompassing model, (c): estimates of λ.

The last sequential procedure investigated here is δ-optimality, where the rival models are
considered in the linearized form and the nominal intervals are specifically chosen as Θ̂

(r)
=

[θ̂u1± rσ̂u1]× [θ̂u2± rσ̂u2]× [θ̂u3± rσ̂u3]u=0,1. In the computations we use r = 1, but the specific
value is not as essential in the static case since we have automatic adaption of the interval lengths
by variance estimation. As it may be observed from Figure 3a, this method is also converging
reasonably. The interpretations for the estimated residual standard errors of both models in
Figures 3b and 3c are similar to those for the other procedures. Note that δ-optimality was
originally developed to compute exact and not approximate designs. Nevertheless as can be seen
these newly computed sequential designs for δ-optimality provide reasonable limit designs.

The following figure , Fig. 4 shows the criterion values normalized by the number of observations
at each iteration of the sequential procedure (normalized criterion values) which can help to
understand how the gathered information, reflected in the criterion values, evolve per observation
at each step of the sequential procedure. As it may be observed from this figure for all the three
methods the normalized criterion values start settling down (getting smooth) and getting nearer
and nearer to their own maximum (drawn as red dashed horizontal lines) from some point on
and this suggests that one could stop the sequential procedure sooner than B = 500 number of
iterations, to save budget, in applications.
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Figure 3: δ-sequential procedure, the competitive model is used to generate the obs. (a): sequentially constructed
designs, (b) and (c): residual standard error estimates of the competitive and noncompetitive models, respectively.

The way that the normalized criterion values evolve can help to understand the speed of con-
vergence of each method in a more detailed way by comparing the first time when (the iteration
in which) the normalized criterion values level off. This is represented in Table 1. The left
block of Table 1 suggests that Ds sequential procedure is slightly faster than the others since it
requires less minimum number of observations to reach different quantiles of its maximum (to
get nearer and nearer to the maximum information). Similar observations about the other δ
and T sequential procedures suggest their reasonable convergence rates. Similar information is
provided in the right block of the table, if one assumes to have the noncompetitive model as the
data generator. Generally it is observed that all methods perform well.
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Figure 4: Normalized criterion values for all three methods (a): T , (b): Ds, (c): δ

4 Discussion and Conclusion

In this work we considered three sequential design procedures to observe how they behave and in
order to compare them. It was seen that all T , Ds and δ-sequential procedures behave reasonable
and that specially the Ds-sequential procedure has a relatively higher rate of convergence, com-
pared to T and δ-sequential procedures, by comparing the normalized criterion values. Moreover,
the simplicity of computations makes the Ds-sequential procedure even more attractive. Note
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Table 1: Minimum number of required observations (Min obs.) to reach different quantiles of the
respective maximum for all three methods, left under competitive and right under noncompetitive
model.

Min obs. (competitive) Min obs. (noncompetitive)

50% 75% 90% 95% 50% 75% 90% 95%

T 6 16 73 105 5 16 77 97

Ds 6 28 45 61 7 16 42 74

δ 9 26 58 87 22 60 105 138

that similar results (with slight changes) hold if the noncompetitive model is the data generator.
These results can help an experimenter with a fixed and limited budget decide on how to proceed
with sequential discriminating designs for enzyme kinetic models.
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