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Abstract

Small area estimation methods are used in surveys, where sample sizes are too small

to get reliable direct estimates of parameters in some population domains. We consider

design-based linear combinations of direct and synthetic estimators and propose a two-

step procedure to approach the optimal combination. We construct the mean square

error estimator suitable for this and for any other linear composition that estimates the

optimal one. We will present a simulation study at the congress, where we use data

from the Lithuanian Labor Force Survey to estimate proportions of the unemployed and

employed in municipalities.
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1 Introduction

Traditional direct estimation methods are not effective if there are additional needs to estimate

parameters for unplanned domains of the survey population. This is because the direct estimators

are based on the domain sample only and therefore the sample sizes obtained may be too small to

provide accurate results in some of that domains. To solve such a problem, indirect estimators are

used in the small area estimation theory [6], where the estimation domain (area) is called small, if

the direct estimator has there an unacceptably large variance. The indirect estimators are based on

linking models that help to borrow sample information from neighbor domains through auxiliary

data available from registers or other surveys. That approach increases the effective sample size

and hence reduces the variances of estimators in the small domain. The disadvantage of these

estimators is their biases, while the direct estimators are unbiased or approximately so.

Synthetic estimators based on implicit linking models and their linear combinations with the

direct estimators constitute an important subclass of the indirect estimators. They are considered

in the traditional design-based estimation theory [6, Chapter 3], where estimators of parameters

are based only on the randomness induced by the sampling design. The composite estimation

is a good way to find a trade-off between large variances of the direct estimators and biases of

the synthetic estimators. Even some modern indirect estimators, like the empirical best linear

unbiased predictors (EBLUPs) [4, 1], built using linear mixed models, are expressed as the linear

combinations of the direct and synthetic estimators. Nowadays, it is almost accepted that explicit

small area models, like that including random area-specific effects for EBLUPs, are a more flexible

tool in complex situations of estimation than the traditional estimators. On the other hand, the

latter design-based approach is desirable in many sample surveys, and estimators are quite simple.

Despite the simplicity of the traditional design-based compositions, they are less attractive due
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to the difficulty in estimating their design mean square errors (MSEs) and especially the bias parts

of MSEs. We derive the general MSE estimator for any composition that approximates the optimal

one in the sense of the minimal MSE. We also propose a new two-step procedure to estimate the

optimal linear combination for any pair of direct and synthetic estimators.

2 Design-based composite estimation

2.1 Preliminary concepts

The set U = {1, . . . , N} consists of the labels of elements of the finite survey population. The

partition U = U1 ∪ · · · ∪ UM of the population describes the domains of interest, where Ui ∩ Uj = ∅
as i 6= j, and there are Ni elements in the domain Ui. Let y be a study variable with the fixed values

y1, . . . , yN assigned to the elements of U . To estimate the domain parameters θi, for instance, the

domain means θi =
∑

k∈Ui yk/Ni, i = 1, . . . ,M , the sample s ⊂ U of size n < N is drawn according

to the sampling design p(·). If the design without replacement was not constructed to ensure the

samples si = s ∩ Ui of fixed sizes ni in the domains, then small ni can be obtained, and then

the accuracy of any direct estimators θ̂di of θi is questionable because of large design variances

ψi = varp(θ̂di ). Hereafter we use the symbols Ep, varp, and MSEp to denote expectation, variance,

and MSE calculated according to p(·), respectively.

An alternative to the direct estimator θ̂di is the synthetic estimator θ̂Si , which uses the sample

of a larger area through the implicit linking model. A typical model stands on the synthetic

assumption that the small domain has the same characteristics as the large area [6, Chapter 3].

Similarly, direct estimators ψ̂d
i of ψi have large design variances themselves for small sample sizes.

Therefore, applying the generalized variance function approach [7], the estimators ψ̂d
i are smoothed,

and more stable estimators ψ̂s
i are further used.

2.2 Approximations to optimal compositions

Since the synthetic estimator θ̂Si of θi uses larger sample, its design variance is smaller compared to

that of the direct estimator θ̂di . However, a contribution of its design bias to MSE can be substantial

if the synthetic assumption is not realistic. To find a balance between larger variances ψi of θ̂di and

the biases of θ̂Si , we consider the linear compositions

θ̃Ci = θ̃Ci (λi) = λiθ̂
d
i + (1− λi)θ̂Si , i = 1, . . . ,M, (1)

with coefficients 0 6 λi 6 1. Minimizing the function MSEp(θ̃Ci (λi)) with respect to λi, the optimal

weight for the ith domain is the population characteristic

λ∗i =
MSEp(θ̂Si )− Ci

MSEp(θ̂di ) + MSEp(θ̂Si )− 2Ci

with Ci = Ep(θ̂di − θi)(θ̂Si − θi). (2)

Applying the assumption |Ci| � MSEp(θ̂Si ) and knowing that the estimator θ̂di is nearly unbiased,

a standard approximation used to optimal parameter (2) is [6, Section 3.3]

λ∗i ≈ MSEp(θ̂Si )/(ψi + MSEp(θ̂Si )). (3)

However, further evaluation from sample data is still complicated because of difficulties to estimate

MSEp(θ̂Si ). The best general method known in the literature, which does not require any additional
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synthetic assumptions, is to use the representation [6, Section 3.2.5]

MSEp(θ̂Si ) = Ep(θ̂Si − θ̂di )2 − varp(θ̂Si − θ̂di ) + varp(θ̂Si ), (4)

which includes the unbiased direct estimator θ̂di , and then to build an approximately design unbiased

estimator

mseu(θ̂Si ) = (θ̂Si − θ̂di )2 − σ̂2(θ̂Si − θ̂di ) + σ̂2(θ̂Si ) (5)

of (4), where σ̂2(·) stands for an estimator of the design variance varp(·). However, estimator (5)

can be very unstable for individual small domains, and thus it is not efficient to use it for estimation

of weight (2) or its approximation (3).

Therefore, less straightforward ways are used to approximate and estimate the optimal coeffi-

cients for compositions (1). One of the ideas is to set a common weight for all domains (or groups

of them) and then minimize a total MSE with respect to that weight [5]. A similar but more sophis-

ticated composite estimation is to apply James–Stein method [6, Section 3.4]. A flexible proposal

is sample-size-dependent estimation [3], where estimators of the weights λi in (1) are taken to be

dependent on the sample sizes in the domains.

2.3 Estimation of mean square errors

Estimation of MSEs of the design-based composite estimators is a difficult task, as pointed several

times in [6, Chapter 3]. That is due to estimation of the component MSEp(θ̂Si ), and estimated

weights λ̂i add more complexity. The main problem here is to estimate biases of the estimators,

while we can always apply at least resampling methods to evaluate the design variances.

The general method used for the synthetic estimators can be applied to the compositions as

well, see [6, Example 3.3.1] and [2]. That is, treating the composition θ̂Ci = θ̃Ci (λ̂i) as a synthetic

estimator, one can use the estimator

mseu(θ̂Ci ) = (θ̂Ci − θ̂di )2 − σ̂2(θ̂Ci − θ̂di ) + σ̂2(θ̂Ci ) (6)

of MSEp(θ̂Ci ). However, this estimator has the same drawbacks as (5) including undesirable property

to take negative values.

We construct the estimator of MSE for any composite estimator θ̂Ci defined by (1) that is close

to the optimal combination θ̂opti = θ̃Ci (λ∗i ). First consider general composition (1) with a fixed

weight. Assuming that its direct component θ̂di is nearly unbiased, we have

D̃i = Ep(θ̃Ci )− θi ≈ (1− λi)Bi, where Bi = Ep(θ̂Si )− θi (7)

denotes the design bias of the synthetic part. Assuming additionally that max{|Ci|, varp(θ̂Si )} � ψi,

optimal parameter (2) is approximated by the quantity λ̃∗i = B2
i /(ψi +B2

i ). Assume next that the

number λi in (1) is chosen so that it is close to the optimal λ∗i . Then, solving the approximate

equation λ̃∗i ≈ λi, we obtain B2
i ≈ λiψi/(1 − λi). Inserting the latter relation into the square of

(7), we arrive to

D̃2
i ≈ λi(1− λi)ψi. (8)

For any design-based composite estimator θ̂Ci ≈ θ̂opti , we derive the squared estimator D̂2
i of the

bias Di = Ep(θ̂Ci ) − θi by letting D2
i ≈ D̃2

i and then replacing the unknown parameters in (8) by

their empirical analogs. Finally, we get the estimators

mseb(θ̂Ci ) = λ̂i(1− λ̂i)ψ̂s
i + σ̂2(θ̂Ci ), i = 1, . . . ,M, (9)

of MSEp(θ̂Ci ), where the term σ̂2(θ̂Ci ) is an estimator of the design variance varp(θ̂Ci ).
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2.4 Procedure of composite estimation

We propose a straightforward procedure to estimate optimal weight (2) through approximation (3)

and employing MSE estimation by (9). In the first step, let us assume that the squared bias B2
i is

negligible. Then λ̂
(1)
i = σ̂2(θ̂Si )/(ψ̂s

i + σ̂2(θ̂Si )) is a good estimator of (2), and m̂
(1)
i = mseb(θ̃Ci (λ̂

(1)
i ))

is the MSE estimator of the obtained composition. However, the assumption Bi ≈ 0 may be

incorrect, and then the empirical weight λ̂
(1)
i is very likely to underestimate λ∗i . Therefore, in

the second step, we treat the composition θ̃Ci (λ̂
(1)
i ) as the synthetic estimator and build the new

composition

θ̂Cb
i = λ̂

(2)
i θ̂di + (1− λ̂(2)i )θ̃Ci (λ̂

(1)
i ), where λ̂

(2)
i = m̂

(1)
i /(ψ̂s

i + m̂
(1)
i ), (10)

and mseb(θ̂Cb
i ) = λ̂

(2)
i (1− λ̂(2)i )ψ̂s

i + σ̂2(θ̂Cb
i ) is the estimator of MSEp(θ̂Cb

i ) according to (9).

3 Concluding remarks

The proposed MSE estimation supports the idea that if the optimal linear composition cannot be

evaluated well, one should not expect to get an accurate MSE estimate. The estimator of MSE is

very general and takes only non-negative values.

The direct and traditional synthetic estimators should always be combined in small domains.

There are many ways to estimate the optimal combination, but we construct another design-based

composite estimator that adapts to the MSE estimation construction principle.
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