
High-dimensional generalized semiparametric model for longitudinal 
data
Mozhgan Taavoni
Department of Statistics, Faculty of Mathematical Sciences, Shahrood University of Technology 
Shahrood, Iran
taavonimozhgan@yahoo.com

Abstract This paper considers the problem of estimation in the generalized semiparametric model 
for longitudinal data when the number of parameters diverges with the sample size. A penalization 
type of generalized estimating equation method is proposed, while we use the regression spline to 
approximate the nonparametric component. Under some regularity conditions, the resulting estima-
tors enjoy the oracle properties, under the high-dimensional regime. Simulation studies are carried 
out to assess the performance of proposed method, and a real data set are analyzed for procedure 
demonstration.
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1 Introduction

High-dimensional longitudinal data, which consist of repeated measurements on a large number of

covariates, have become increasingly common. Despite the large number of covariates, it often occurs

that only a subset of them is relevant for modeling the response. Inclusion of redundant variables may

hinder accuracy and efficiency for both estimation and inference. Thus, it is important to develop

new statistical methodology and theory of variable selection and estimation for high-dimensional

longitudinal data. The literature on variable selection for longitudinal data is rather limited due to

the challenges imposed by incorporating the intracluster correlation and these works commonly apply

to continuous outcome data. The use of penalization techniques for discrete longitudinal data in

the framework of generalized linear models (GLM) is still in the beginning. Fu (2003) proposed a

generalization of the bridge and Lasso penalties to the generalized estimating equations (GEE) model.

Xu and Zhu (2010) extended the independence screening method to deal with the high dimensional

longitudinal GLMs. Dziak (2006) generalized the Lasso and SCAD methods to the longitudinal

GLMs. The SCAD-penalized selection procedures were illustrated in Xue et al (2010). However, the

aforementioned work all assume that the dimension of predictors is fixed. Xu et al. (2012) proposed

a weighted least squares type function to study the longitudinal GLMs with a diverging number of

parameters. Wang et al. (2012) proposed the SCAD-penalized GEE for analyzing longitudinal data
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with high dimensional covariates. To the best of our knowledge, regularization in the generalized

semiparametric mixed models (GSMM) is neglected.

In this paper, we focus on the GSMM with longitudinal data by allowing for non-Gaussian data and

nonlinear link function. We consider the case where the number of variables p is allowed to increase

with the number of sample size n. Similar to the work of Wang et al. (2012), we apply the penalty

function to the estimating equation objective function. Our method is rather different from their work

because of including random effects and a nonparametric component in the model. We adopt spline

regression to estimate the nonparametric components. The proposed penalized estimation involves

the specification of the posterior distribution of the random effects, which cannot be evaluated in a

closed form. However, it is possible to approximate this posterior distribution by producing random

draws from a distribution using the Metropolis algorithm, which does not require the specification of

the posterior distribution. We establish the asymptotic theory for the proposed method in a high-

dimensional framework where the number of covariates increases with the sample size.

The article is organized as follows. Section 2, formulates the model and considers the estimation

under the GEE framework. Section 3 includes selection of the regularization parameters and the

model selection procedure. Furthermore, asymptotic properties of the estimators are studied. Section

4 demonstrates the effectiveness of the proposed estimation method in the GSMM. through simulation

studies and illustrates the method through an application to the real data. Some concluding remarks

are given in Section 5.

2 GSMM and Estimation Procedure

Consider a longitudinal study with n subjects and ni observations over time for the ith subject. Let

ui be a qˆ1 vector of random effects corresponding to the ith subject, yij be an observation of the ith

subject measured at time tij , and yi1, . . . , yini given ui are conditionally independent and each yij |ui

is distributed as an exponential family distribution whose p.d.f is given by

ppyij |ui,βn, ϕq “ exp
“

ϕ´1tyijθij ´ bpθijqu ` cpyij , ϕq
‰

, (2.1)

where ϕ is a scale parameter, cp., .q is a function only depending on yij and ϕ, and θij is the (scalar)

canonical parameter. The conditional expectations and variances of yij given ui are given by µij “

Epyij |uiq “ b.pθijq and νij “ varpyij |uiq “ ϕb..pθijq, respectively, where b.pθq “
Bbpθq

Bθ and b..pθq “
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B2bpθq

Bθ2
. In this paper, we assume that the conditional mean µij satisfies

gpµijq fi ηij “ XJ
ijβn ` ZJ

ijui ` fptijq, i “ 1, . . . , n; j “ 1, . . . , ni, (2.2)

where gp.q is a known monotonic link function, XJ
ij is a pn ˆ 1 vector of explanatory variables, βn

is a pn ˆ 1 vector of unknown parameters of the fixed effects, ZJ
ij is a q ˆ 1 vector relating to the

random effects, fp.q is an unknown smooth function which is continuous and twice differentiable

function on some finite interval. The dimension of the covariates pn is allowed to depend on the

number of subjects n. To complete the specification, assume that the random effects u “ tu1, . . . ,uqu

independently follow a distribution, depending on parameters Σ as

ui ∼ fupui|Σq. (2.3)

The model defined in Eqs. (2.1)–(2.3) is referred to as generalized semiparametric mixed model

(GSMM). Specific assumptions will be considered for the number of variables pn in section 3.2.

We approximate the unspecified smooth function using

fptijq “ α0 ` α1tij ` . . . ` αdt
d
ij `

Ln
ÿ

l“1

αpd`1q`lptij ´ t
plq
i qd` “ Bptijq

Jαn,

where d is the degree of the polynomial component, Ln is the number of interior knots (rate of Ln will

be specified in Section 3.2), tplq
i is referred as knots of the ith subject, Bptijq “

´

1, tij , . . . , t
d
ij ,

`

tij ´

t
p1q

i

˘d

`
, . . . ,

`

tij ´ t
pLnq

i

˘d

`

¯

is a hn ˆ1 vector of basis functions, hn is the number of basis functions used

to approximate fptijq, hn “ d ` 1 ` Ln , paq` “ maxp0, aq, and αn “ pα0, . . . , αd, αd`1, . . . , αd`LnqJ

is the spline coefficients vector of dimension h. Thus, we can represent the regression model (2.2) as

ηij “ XJ
ijβn ` ZJ

ijui ` Bptijq
Jαn. For convenience, it can take the form ηij “ DJ

ijθn ` ZJ
ijui, where

Dij “
`

XJ
ij ,Bjptiq

J
˘J being a ppn ` hnq ˆ 1 design matrix combining the fixed-effects and spline-

effects design matrices for the jth outcome of the ith subject, and θn “ pβJ
n ,α

J
n qJ is a ppn ` hnq ˆ 1

combined regression parameters vector.

For GSMM, the classical likelihood function can be defined as

Lpθn,Σ, ϕq “

n
ź

i“1

ż

pyi|ui
pyi|ui,θn, ϕqpupui|Σqdui (2.4)

where yi “ pyi1, . . . ,yini
qJ, u “ pu1, . . . ,unq, and pyi|ui

pyi|ui,θn, ϕq “
śni

j“1 ppyij |ui,θn, ϕq. The

log-likelihood is given by ℓpθn,Σ, ϕq “
řn

i“1 lnpyi|ui
pyi|ui,θn, ϕq`

řn
i“1 lnpuipui|Σq. Using the Monte

Carlo Newton-Raphson (MCNR) algorithm of McCulloch (1997), the optimal estimating equation for
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θn is given by

Eu|y

”

n´1
n

ÿ

i“1

Bµipθn,uiq

BθJ
n

V ´1
i pθn,uiq

`

yi ´ µipθn,uiq
˘

ı

“ 0, (2.5)

where µipθn,uiq “ pµi1, . . . , µiniq
J and V ipθn,uiq is the covariance matrix of yi|ui. In real applica-

tions the true intracluster covariance structure is often unknown. The GEE procedure adopts a work-

ing covariance matrix, which is specified through a working correlation matrix Rpρq : V ipθn,uiq “

A
1
2
i pθn,uiqRpρqA

1
2
i pθn,uiq, where ρ is a finite dimensional parameter and Aipθn,uiq “ diagpνi1, . . . , νiniq.

With the estimated working correlation matrix pR ” Rppρq, the (2.5) reduces to Eu|y

”

n´1
řn

i“1D
J
i A

1
2
i pθn,uiq

pR
´1

A
´ 1

2
i pθn,uiq

`

yi ´ µipθn,uiq
˘

ı

“ 0, where Di “ pDJ
i1, . . . ,D

J
ini

qJ. We formally define the esti-

mator as the solution pθn of the above estimating equations.

3 Regularization in the GSMM

In order to select important covariates and estimate them simultaneously, the (2.5) is expanded to

include the penalty term
řpn

k“1 pλnp|βnk|q which yields the following penalized log likelihood

ℓppβn,αn,D, ϕq “

n
ÿ

i“1

lnpyi|ui
pyi|ui,θnq `

n
ÿ

i“1

puipui|Σq ´ n

pn
ÿ

k“1

pλnp|βnk|q, (3.6)

where pλp|βnk|q is any penalty function and λn is a tuning parameter. Since the coefficients θn depends

to the first and third terms of (3.6), we propose the penalized estimating equation

Unpθnq “ Snpθnq ´ qλnp|βn|qJsignpβnq,

where Snpθnq is the left term in (2.5), with qλnp|βn|q “
`

qλnp|βn1|q, . . . , qλnp|βnpn |q
˘

is a 1ˆ pn vector

of penalty functions, signpβnq “
`

signpβn1q, . . . , signpβnpnq
˘

with signpaq “ Ipa ą 0q ´ Ipa ă 0q

and qλnp|βnk|q “ p
1

λn
p|βnk|q. We use the SCAD penalty proposed by Fan and Li (2001) defined by

qλnp|βn|q “ p
1

λn
p|βn|q “ λn

!

Ip|βn| ď λnq `
paλn´|βn|q`

pa´1qλn
Ip|βn| ą λnq

)

, a ą 2. Our proposed estimator

for θn is the solution of Unpθnq “ 0. We apply the Newton-Raphson method to solve Unppθnq “ opanq,

and get the following updating formula

pθ
pm`1q

n “ pθ
pmq

n `

!

Hnppθ
pmq

n q ` nEnppθ
pmq

n q

)´1
ˆ

!

Snppθ
pmq

n q ` nEnppθ
pmq

n qpθ
pmq

n

)

. (3.7)

Where Hnppθ
pmq

n q “ Eu|y

”

řn
i“1D

J
i A

1
2
i pθn,uiq pR

´1
A

1
2
i pθn,uiqDi

ı

, and for a small numbers e.g. ϵ “

10´6, Enppθ
pmq

n q “ diag
!

qλn p|βn1|q

ϵ`|βn1|
, . . . ,

qλn p|βnpn |q

ϵ`|βnpn |
,0hn

)

. 0hn is a zero vector of dimension hn.
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Now we outline the computational procedure used for sample generation. Let U denote the

previous draw from the conditional distribution of U |y, and generate a new value u˚
k for the jth

component of U˚ “ pu1, . . . , uk´1, u
˚
k, uk`1, . . . , unqq by using the candidate distribution pu, accept

U˚ as the new value with probability αkpU ,U˚q “ min
!

1,
pu|ypU˚|y,θn,DqpupU |Dq

pu|ypU |y,θn,DqpupU˚|Dq

)

. otherwise, reject it

and retain the previous value U . The second term in brace can be simplified to pu|ypU˚|y,θn,DqpupU |Dq

pu|ypU |y,θn,DqpupU˚|Dq
“

py|upy|U˚,θnq

fy|upy|U ,θnq
“

śn
i“1 pyi|upyi|U

˚,θnq
śn

i“1 fyi|upyi|U ,θnq
. Note that, the calculation of the acceptance function αkpU ,U˚q

here involves only the specification of the conditional distribution of y|u which can be computed in a

closed form.

3.1 Choice of regularization parameters

For computational convenience, we use equally spaced knots with the number of interior knots

Ln « n1{p2r`1q, where r is positive integer. Following Fan and Li (2001), we set a “ 3.7 and

to select the tuning parameter λn use the GCV given by GCVλn “
RSSpλnq{n

p1´dpλnq{nq2
, where RSSpλnq “

1
N

řN
k“1

”

řn
i“1

`

yi´µip
pθn, U

pkq

i q
˘J

W´1
i

`

yi´µip
pθn, U

pkq

i q
˘

ı

is the residual sum of squares, and dpλnq “

tr
”!

1
N

řN
k“1

”

Hn

`

pθn,U
pkq

˘

ı

` nEnppθnq

)´1
ˆ

!

1
N

řN
k“1

”

Hn

`

pθn,U
pkq

˘

ı)ı

is the effective number of

parameters. Then, λopt is the minimizer of the GCVλn . Note that W i is an ni ˆni covariance matrix

of yi.

3.2 Asymptotic properties

Assume the true value of β0 is partitioned β0 “ pβJ
01,β

J
02qJ and the corresponding design matrix into

Xi “
`

Xip1q,Xip2q

˘

. In our study, the true regression coefficients are θn0 “ pβJ
01,β

J
02,α

J
0 qJ, where

α0 is an hn-dimensional vector depending on f0. For technical convenience let θ0 “ pθJ
01,θ

J
02qJ where

θ01 “ pβJ
01,α

J
0 qJ is ps “ s˚ ` hnq-dimensional vector of true values that the elements are all nonzero

and θ02 “ β02 “ 0. Here, s˚ is the dimension of θ01 and assume that only a small number of covariates

contribute to the response i.e. S “ t1 ď j ď p;βj ‰ 0u has cardinal |S| “ s˚ ă p. Consequently,

estimated values and the design matrix is repartitioned as pθn “ ppθ
J

n1,
pθ

J

n2qJ, and Di “
`

DJ
ip1q,D

J
ip2q

˘J

which pθn1 “ ppβ
J

n1, pαJ
n qJ, Dip1q “

`

XJ
ip1q,Bptiq

J
˘J, pθn2 “ pβn2 and Dip2q “ Xip2q. The following

regularity conditions are required.

(A.5) The eigenvalues of matrix EpXXJ|tij “ tq are bounded away from 0 and infinity uniformly for

all t P ra, bs. The common true correlation matrix R0 has eigenvalues bounded away from zero

and `8; the estimated working correlation matrix R satisfies } pR
´1

´R
´1

} “ Oppn´1{2q, where

R is a constant positive definite matrix with eigenvalues bounded away from zero and `8; we

do not require R to be the true correlation matrix R0;
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(A.6) Let ϵipθn,uiq “
`

ϵi1pθn,uiq, . . . , ϵinipθn,uiq
˘J

“ A
´1{2
i pθn,uiq

`

Y i ´ µipθn,uiq
˘

. There exists

a finite constant M1 ą 0 such that Ep}ϵipθn0,uiq}2`δq ď M1, for all i and some δ ą 0; and there

exist positive constants M2 and M3 such that E
”

exp
`

M2|ϵijpθn0,uiq|
˘ˇ

ˇXi

ı

ď M3 uniformly;

(A.7) Let Bn “ tθn : }θn ´ θn0} ď ∆
a

pn{n, then µ.pDJ
ijθnq, 1 ď i ď n, 1 ď j ď m, are uniformly

bounded away from 0 and 8 on Bn; µ..pDJ
ijθnq and µp3qpDJ

ijθnq, 1 ď i ď n, 1 ď j ď m, are

uniformly bounded by a finite positive constant M2 on Bn;

(A.8) Assuming min1ďkďsn |θn0k|{λn Ñ 8 as n Ñ 8 and s3nn
´1 “ op1q, λn Ñ 0, snplog nq2 “ opnλ2

nq,

log pn “ opnλ2
n{ log nq, pns4nplog nq6 “ opn2λ2

nq, and pns
3
nplog nq8 “ opn2λ4

nq.

Theorems 1-3 below characterize the existency, consistency and normality of the proposed penalized

estimator when pn Ñ 8.

Theorem 1. (Existency). Assume (A.1)–(A.8). Let Snkppθnq denotes the kth element of Snppθnq.

Then, there exists an approximate penalized GEE solution pθ “ ppθ
J

1 ,
pθ

J

2 qJ satisfies the

(i) Pn

´

|Unkppθnq| “ 0, k “ 1, . . . , s˚
n, ps˚

n ` 1q, . . . , psn “ s˚
n ` hnq

¯

Ñ 1,

(ii) Pn

´

|Unkppθnq| ď
λn

log n
, k “ ps˚

n ` hn ` 1q, . . . , pn

¯

Ñ 1,

where

Unkppθnq “

$

’

&

’

%

Snkppθnq ´ n
qλn p| pβnk|q

ϵ`| pβnk|
pβnk k “ 1, . . . , sn,

Snkppθnq k “ psn ` 1q, . . . , pn

,

Theorem 2. (Consistency). Assume (A1)–(A8). Then, Unpθnq “ op1q has a root pθn that

piq }pθn ´ θn0} “ Opp
a

pn{nq,

piiq
1

n

n
ÿ

i“1

ni
ÿ

j“1

`

pfptijq ´ f0ptijq
˘2

“ Oppn´2r{p2r`1qq.

Theorem 3. (Oracle properties). Assume (A.1)–(A.8). Then, we have

piq Pnppβn2 “ 0q Ñ 1,

piiq ξJ
nM

˚´1{2

n pβn0qH
˚

npβn0qppβn1 ´ βn01q
D
Ñ Npnp0, 1q, @ξn P Rpn & }ξn} “ 1.

M
˚

n “ Eu|y

”

řn
i“1X

˚J

i A
1
2
i pθn,uiqR

´1
R0R

´1
A

1
2
i pθn,uiqX

˚
i

ı

, X˚
i “ pI ´ P qXi,

P “ BpBJΩBq´1BJΩ, Ω “ diagtΩiu, Ωi “ Eu|y

”

A
1
2
i pθn,uiqR

´1
A

1
2
i pθn,uiq

ı

, and
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H
˚

n “ Eu|y

”

řn
i“1X

˚J

i A
1
2
i pθn,uiqR

´1
A

1
2
i pθn,uiqX

˚
i

ı

.

4 Numerical Studies

This section, first conduct simulation study to illustrate the consistency and the sure screening property

of the proposed penalized procedure(P-GSMM) empirically, and compare its finite sample performance

with some other different model settings, including the unpenalized one (GSMM), and the penalized

generalized linear model (P-GLMM). We further apply our proposed method for analyzing two real

data sets.

4.1 Simulation

We generated 100 data sets following yij |bi ∼ Poispµijq, with ηij “ logpµijq “
řp

k“1 x
pkq

ij βk`sinp2πtijq`

bi, where i “ 1, . . . , n, and j “ 1, . . . , ni, β “ p´1,´1, 2, 0, . . . , 0q, xpkq

ij ∼ Up´1, 1q, tij ∼ Up0, 1q, and

bi ∼ Np0, 0.25q. The predictor dimension pn is diverging but the dimension of the true model is

fixed to be 3. Regarding the choice of the dimensionality of the parametric component, pn, authors

recommended many suggestions as a sensible choice. For example pn “ rn2 s, pn “ r4.5n1{4s, and

pn “ r n
b logpnq

s, where b ą 1 and ras stands for the largest integer no larger than a. These only discuss

the situation p Ñ 8 as n Ñ 8 with pn ă n. For case pn ąą n, we can mention to logppnq “ oppnbq,

where 0 ă b ă 1. Ofcourse challenges arise when p is much larger than n, choosing a larger value of pn

increases the probability that variable selection methods will include all of the correct variables, but

including more inactive variables will tend to have a slight detrimental effect on the performance of

the final variable selection and parameter estimation method. We have found that this latter effect is

most noticeable in models where the response provides less information. We therefore used the pairs of

pn, pnq as p50, 11q, p100, 14q, p150, 16q and p30, 100q, p100, 500q, p200, 2000q respectively for cases pn ă n

and pn ąą n. For evaluating estimation accuracy, we report the empirical mean square error (MSE),

defined as
ř100

k“1 }pβ
k

n ´ βn0}{100 where pβ
k

n is the estimator of βn0 obtained using the kth generated

data set. The performance in variable selection is gauged by ‘C’ the mean over all 100 simulations of

zero coefficients which are correctly estimated by zero, ‘I’ the mean over all 100 simulations of nonzero

coefficients which are incorrectly estimated by zero, ‘Under-fit’ the proportion of excluding any true

nonzero coefficients,‘Correct-fit’ the proportion of selecting the exact subset model, and ‘Over-fit’ the

proportion of including all three important variables plus some noise variables. Table 1 summarize

the results of the P-GSMM, GSMM, and the P-GLMM for the different values of pn, pnq. In terms of

estimation accuracy the P-GSMM performs closely to the P-GLMM, whereas our proposed approach

gives the smallest MSE, and consistently outperforms its P-GLMM counterpart. In terms of model
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selection we observe that the GSMM generally does not lead to a sparse model. Furthermore, the

P-GSMM and the P-GLMM successfully selects all covariates with nonzero coefficients (i.e., I rates are

zero), but it is obvious that the proposed approach has slightly stronger sparsity (i.e., a fairly higher

number of Cs). For P-GSMM, The probability of identifying the exact underlying model is about

80% and this rate grows by increasing the sample size, confirming the good asymptotic properties of

the penalized estimators. The results are the same in both cases of pn ă n and pn ąą n, but when

pn ąą n zero coefficients tends to increasingly included in the model.

Table 1: Simulation results
method case pn ă n case pn ąą n

pn, pq “ p50, 11q pn, pq “ p30, 100q
MSE C(8) I(0) Under-fit Correct-fit Over-fit MSE C(97) I(0) Under-fit Correct-fit Over-fit

GPLMM 0.116 0.09 0.00 0.00 0.00 1.00 68.028 0.074 0.00 0.00 0.00 1.00
P-GLMM 0.060 6.54 0.00 0.00 0.13 0.87 0.435 96.48 0.00 0.00 0.55 0.45

P-GPLMM 0.052 7.59 0.00 0.00 0.64 0.36 0.391 96.41 0.00 0.00 0.60 0.40

pn, pq “ p100, 14q pn, pq “ p100, 500q
MSE C(11) I(0) Under-fit Correct-fit Over-fit MSE C(497) I(0) Under-fit Correct-fit Over-fit

GPLMM 0.072 0.16 0.00 0.00 0.00 1.00 1499.136 47.02 0.03 0.03 0.00 1.00
P-GLMM 0.041 10.52 0.00 0.00 0.77 0.23 0.062 495.720 0.00 0.00 0.89 0.11

P-GPLMM 0.036 10.70 0.00 0.00 0.93 0.07 0.038 496.250 0.00 0.00 0.92 0.08

pn, pq “ p150, 15q pn, pq “ p200, 2000q
MSE C(12) I(0) Under-fit Correct-fit Over-fit MSE C(1997) I(0) Under-fit Correct-fit Over-fit

GPLMM 0.060 0.26 0.00 0.00 0.00 1.00 125.406 1137.62 0.00 0.00 0.00 1.00
P-GLMM 0.044 11.25 0.00 0.00 0.92 0.08 0.018 1996.89 0.00 0.00 0.30 0.700

P-GPLMM 0.045 11.87 0.00 0.00 0.96 0.04 0.018 1996.93 0.00 0.00 0.54 0.46

4.2 AIDS data analysis

This dataset contains 2376 observations of CD4 cell counts on 369 men infected with the HIV virus.

The first objective of this analysis is to characterize the population average time course of CD4 decay

while accounting for the following additional predictor variables including AGE, SMOKE (smoking

status measured by packs of cigarettes), DRUG (yes, 1; no, 0), SEXP (number of sex partners),

DEPRESSION as measured by the CESD scale (larger values indicate increased depressive symptoms)

and YEAR (the effect of time since seroconversion). This data analysed by many authors such as Wang

et al. (2005), Huang et al. (2007) and ?. Their analysis was conducted on square root transformed

CD4 numbers whose distribution is more nearly Gaussian. In our analysis, we fit the data using

an GSMM, without transforming the CD4 by adopting the Poisson regression. To take advantage

of flexibility of partially linear models, we let YEAR be modeled nonparametrically, the remaining

parametrically. It is of interest to examine whether there are any interaction effects between the

parametric covariates, so we included all these interactions in the parametric part. We further applied

the proposed approach to select significant variables. To compare the performance of proposed P-

GSMM method with GSMM and P-GLMM, we use the standard errors (SE). To best identify a model

supported by the data, we adopt the Akaike information criterion (AIC) and the Bayesian information
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Table 2: AIDS data results

GSMM P-GLMM P-GSMM
Variabeles pβ(SE) pβ(SE) pβ(SE)

AGE 0.073 (0.039) -0.092 (0.051) 0 (0)
SMOKE 0.188 (0.179) 0.888 (0.192) 0.079 (0.045)
DRUG 0.130 (0.143) 6.068(0.125) 0.142 (0.074)
SEXP -0.049 (0.031) 0.672 (0.030) 0.017 (0.012)
CESD -0.001 (0.011) 0 (0) 0 (0)

AGE ˚ SMOKE 0.002 (0.014) 0.014 (0.004) 0 (0)
AGE ˚ DRUG -0.034 (0.024) 0.032 (0.035) 0 (0)
AGE ˚ SEXP -0.009 (0.003) 0 (0) 0 (0)
AGE ˚ CESD 0.001 (0.002) 0 (0) 0 (0)

SMOKE ˚ DRUG 0.009 (0.054) -0.584 (0.150) -0.014 (0.038)
SMOKE ˚ SEXP -0.010 (0.012) -0.034 (0.010) 0 (0)
SMOKE ˚ CESD -0.006 (0.009) 0 (0) 0 (0)
DRUG ˚ SEXP -0.025 (0.019) -0.598 (0.041) -0.022 (0.012)
DRUG ˚ CESD 0.006 (0.006) 0 (0) 0 (0)
SEXP ˚ CESD 0.001 (0.003) 0 (0) 0 (0)

ℓmax 8463007 7529158 8624429
AIC -16925983 -15058286 -17248827
BIC -16925924 -15058228 -17248769

criterion (BIC). Table 2 presents the summary of the fitting results including the values of standard

errors, together with ℓmax, AIC, and BIC under the three models. Judging from Table 2, the P-GSMM

tends to exhibit slightly SE compared to GSMM and P-GLMM, nevertheless this difference is not more

dramatic. Meanwhile, the values of AIC, BIC of proposal are smaller than the two others, revealing

that the P-GSMM can provide better fitting performance. Under P-GSMM, SMOKE, DRUGS, SEXP,

SOMKE ˚DRUG and DRUG ˚SEXP are identifies as significant covariates. One notes some slight

selection difference when P-GLMM is used, which suggests that AGE ˚SMOKE, AGE ˚DRUG, and

SMOKE ˚ SEXP may also be significant. We also find some significant interactions among some

covariates which may be ignored by Wang et al. (2005) and Huang et al. (2007).

5 Conclusions

We developed a general methodology for simultaneously selecting variables and estimating the un-

known components in the semiparametric mixed-effects model for non-Gaussian longitudinal data

when the number of parameters diverges with the sample size. Penalized estimating equation tech-

nique involves the specification of the posterior distribution of the random effects, which cannot be

evaluated in a closed form, and we used a Metropolis algorithm, which does not require this spec-

ification. We further investigated some asymptotic properties of the estimates. To investigate the

performance of our approach, it compared with the unpenalized generalized semiparametric mixed-

effects model and penalized generalized linear mixed-effects model throw a simulation study and the

analysis of two data sets. Results showed that the proposed model outperforms the linear counter-
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parts on the provision of model selection and estimation. In addition, we found the estimation is more

efficient when the partially part is taken into consideration. The results are consistent in both cases

of pn ă n and pn ąą n.
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