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Abstract

This paper proposes a two-level hierarchical Gaussian process that is dynamically modeled as a multivariate
functional autoregressive model (MFAR). Through MFAR, we capture the cross-correlation amongst the
functional time series. We also investigate the causal connection between functional time series through the
application of Granger causality. The performance of this model is illustrated through a series of simulation
studies and applications to yield curve prediction of various countries. Our model provides improved forecast
accuracy in most cases.
Keywords— Multivariate functional time series, dynamic linear model, Granger causality

1 Introduction

The collection of more complex data with function features encourages the study of multivariate functional data. Existing
approaches ([6], [4], [1], [2]) rely on the functional principal component analysis (FPCA) to treat multivariate functional
data. However, FPCA is designed for dense grids without calculation errors, leading to inadmissible predictions with
large measurement errors in the case of a sparse setting. We later prove that the observable process with measurement
error produces inefficient estimates even in a dense environment as the process is no longer MFAR(p). We propose a
methodology that overcomes these concerns.

Kowal et al. [5] applied a functional autoregressive model (FAR) on the univariate functional time series. Working on
similar lines, we also proposed a hierarchical model for multivariate functional time series. In multivariate cases, we seek
to study the correlation among the data series. For computation, we first represent the hierarchical model as the dynamic
linear model (DLM). We use observation equations to discretize the functional data and obtain measurement error, and
evolution equations take into account of the correlation among the functional time series and define the process model.
The latent process in our case is the multivariate functional autoregressive model of order p, written as MFAR(p), instead
of FAR(p). A dynamic functional factor model further specifies the dynamic innovation process.

A question of great interest is whether there exists a directionality of information. Several works on multivariate time
series based on vector autoregressive model (VAR) have considered this problem. We will be the first to address such a
problem in the case of multivariate functional time series. Basically, we are interested in analyzing the causal relations
among a set of variables. As discussed by Granger [3], the first time series X is said to have a causal influence on the
second time series Y if the prediction of second series Y could be improved by the inclusion of past measurements from
the first time series X. Later, this concept was extended to various nonlinear and time-varying cases. In this paper, we will
investigate the Granger causality among the bond yields of different countries.
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2 Multivariate Functional Autoregression Model

Suppose we have K functional time series defined as {Y n
t }, n = 1, · · · ,K on some compact index set T ⊂ RD, typically

D = 1. Consider {YYY t} as K−variate functional time series represented as: YYY t = [Y 1
t , · · · ,Y K

t ]′ where Y n
t ∈ L2(T) for

n = 1,2, · · · ,K.

Multivariate functional autoregression model of order p, written as MFAR(p):

YYY t −µµµ =
p

∑
l=1

ΨΨΨl(YYY t−l−µµµ)+ εεε t . (1)

where µµµ = [µ1,µ2, · · · ,µK ]′ is mean of YYY t under stationarity, εεε t = [ε1
t ,ε

2
t , · · · ,εK

t ]′ is a vector of innovation functions with
each εk

t is a sequence of independent mean zero random function with E||εn
t ||2 < ∞ for n = 1, · · · ,K and ΨΨΨl = [Ψi, j

l ]Ki, j=1

where each Ψ
i, j
l is a bounded linear operator on L2(T ) for i, j = 1, · · · ,K and l = 1,2, · · · , p.

We assume that each functions Y n
t (τ

n), n = 1, · · · ,K are observed at unequally-spaced points τn ∈ T . We restrict
to p = 1 and consider only integral operators for better interpretability and computational convenience. In practice, the
functional observations {Yt} are observed via discrete samples of each curve with some measurement error. Suppose we
observe yn

i,t ∈ R sampled with vn
i,t from {Y n

t } ∈ L2(T ), n = 1, · · · ,K:

yn
i,t = Y n

t (τ
n
i,t)+ vn

i,t (2)

where τn
i,t for i = 1, · · · ,mn

t are observation points of Y n
t and vn

i,t is a mean zero measurement error with finite variance.
Assume ααα t = YYY t −µµµ , then two level hierarchical model is given as:

yn
i,t = µ

n(τn
i,t)+α

n
t (τ

n
i,t)+ vn

i,t , i = 1, · · · ,mn
t ,

α
n
t =

K

∑
m=1

∫
ψ

n,m(τn,u)αn
t−1(u)du+ ε

n
t (τ

n), ∀τ ∈T and n = 1, · · · ,K,
(3)

for t = 2, · · · ,T, where ψn,m are integral operators and we assume that {vvvi,t} and {εεε t} are mutually independent.
The presence of measurement error in model (3) increase the estimation error of ΨΨΨ and produce inefficient forecasts.

The following proposition illustrates that MFAR(p) model for the observables is inappropriate.
Proposition 1: Let YYY t −µµµ = ∑

p
l=1 ΨΨΨ(YYY t−l + εεε t) and suppose we observe yyyt = YYY t + vvvt are independent white noise

processes. Then the observable process {yyyt} follows a multivariate functional autoregressive moving average (FARMA)
process of order (p, p).

To overcome this model misspecification, we separate the observed data into functional process and measurement
errors in the dynamic linear model (DLM).

2.1 Dynamic Linear Models for MFAR(p)

For practical implementation of model (3), we select a finite set of evaluation points for each of functional time series,
T n

e = {τn
1 , · · · ,τn

M} ⊂ T for n = 1, · · · ,K. We approximate the integral in (3) using quadrature methods with Qn,m for
n,m = 1, · · · ,K, as a known quadrature weight matrix. Let Zn

t be mn
t ×M, n = 1, · · · ,K, incidence matrix that identifies

the observation points observed at time t for n-th functional times series. We can formulate the dynamic linear model
(DLM) corresponding to the hierarchical model (3) as:

yyyt = ZZZt µµµ +ZZZtααα t + vvvt , [vvvt |Σv]
indep∼ N(000,Σv) for t = 1, · · · ,T,

ααα t = ψψψQQQααα t−1 + εεε t , [εεε t |KKKε ]
indep∼ N(000,KKKε) for t = 2, · · · ,T,

ααα1 ∼ N(000,KKKε)

(4)

where yyyt = [yn
i,t ], is discrete sample of K-variate functional time series {YYY t} for i = 1, · · · ,mn

t and n = 1, · · · ,K. Here, µµµ =

[µ1(τ1), · · · ,µK(τK)]′ and ααα t = [α1
t (τ

1), · · · ,αK
t (τK)]′ where µ i(τ i)= [µ i(τ i

1), · · · ,µ i(τ i
M)] and α i

t (τ
i)= [α i

t (τ
i
1), · · · ,α i

t (τ
i
M)]

for i = 1, · · · ,K. Other matrices are defined as:

ZZZt =


Z1

t 0 · · · 0
...

. . .
...

0 0 · · · ZK
t

 , ψψψ =


{ψ1,1(τi,τ j)}M

i, j=1 · · · {ψ1,K(τi,τ j)}M
i, j=1

...
. . .

...
{ψ1,K(τi,τ j)}M

i, j=1 · · · {ψK,1(τi,τ j)}M
i, j=1

 and QQQ =


Q1,1 · · · Q1,K

...
. . .

...
Q1,K · · · QK,1

 .
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2.2 Forecasting MFAR(p)

For n = 1, · · · ,K we firstly initialize µn as smooth mean of {yn
t }T

t=1 and fit a spline to each Y n
t −µn to estimate αn

t . Using
the estimates of µn and αn

t we estimate the measurement error variance-covariance matrix Σvvv and also initialize the FAR
kernels ψψψ1, · · · ,ψψψ p as described in Kowal et al. [5]. We apply functional dynamic linear model (FDLM) to compute the
implied covariance matrix for εεε t . Later we propose the Gibbs sampling algorithm for model (4), which is an extension of
Gibbs sampling algorithm for univariate functional autoregression model of order p [5].

2.3 Theoretical Results

Let Ft denotes the information set available at time t. Thus, Ft = {yyyt ,yyyt−1, · · · ,yyy1}∪F0, where F0 is the information
prior at t = 1.

Theorem 1 For any finite set of evaluation points Te ⊂T , the unique best linear predictor of the conditional random
matrix δδδ ∼ [δδδ |YYY ,ΘΘΘ], where δδδ ,YYY ⊂FT ∪{ααα t(τ) : τ ∈Te, t = 1, · · · ,T} and Θ = {µµµ,Σv,ψψψ,KKKε}, under the risk Re and
conditional on model (3) with integral approximation, is the conditional expectation δ̂δδ (YYY |ΘΘΘ) = E[δδδ |YYY ,ΘΘΘ] as computed in
model (4).

Corollary 1.1 The unique best linear predictor of [ααα t(τ
∗)|Fs] for any time t,s and any point τ∗ ∈T is the corresponding

expectation under model (4).

3 Granger Causality in Functional Autoregression Model

Here, we investigate the causal relationship between two functional time series data Yt and Xt , t ∈ T observed on unequally
spaced points τ ∈T where T ⊂ R is a compact index set. Firstly, we model Yt as functional autoregressive model of
order 1, written as FAR(1), and partition the linear projection of Yt on Yt−1 and Xt−1 to account for the Granger causality
as

Yt −µY = ΨY (Yt−1−µY )+ΨX (Xt−1−µX )+ εt (5)

In second model, we model Yt as linear projection of Yt−1 only as

Yt −µY = Ψ(Yt−1−µY )+ ε
′
t (6)

where Yt and Xt ∈ L2(T ), ΨY , ΨX and Ψ are bounded linear operator on L2(T ), µY and µX are mean of {Yt} and {Xt}
respectively and εt and ε ′t ∈ L2(T ) are zero mean independent random functions.

We perform the sampling for both the models and estimate the one-step forecasts [yT+h|y1:(T+h−1)],h = 1, · · · ,R
for both the models. Let ŶT+h and Ŷ ∗T+h be the function of one-step forecast for first model (5) and second model (6)
respectively for h = 1, · · · ,R. We compute the sum of square errors for both models SSE1 = ∑

R
h=1 ||YT+h− ŶT+h||2 and

SSE2 = ∑
R
h=1 ||YT+h− Ŷ ∗T+h||2 where YT+h = (YT+h(τ1), · · · ,YT+h(τM)))′ are the observed values used to measure the

one-step forecasting performance at the evaluation points. To investigate the effect of Granger causality of Xt on Yt , we
performed permutation test using the statistic called as Fobs-statistic and defined as:

Fobs =
(SSE2−SSE1)/(k1− k2 +1)

SSE1/(R− k1−1)
. (7)

where k1 and k2 be the number of parameters in the first model (5) and second model (6) respectively.

4 Simulations

We perform one-step and five-step forecasting and see how the associated performance varies with the sample size T and
cross correlation between the series.We are particularly interested in the causal relationship between two functional time
series. We will consider two cases based on model (5) and model (6) with varying sample size T . Functional time series
{Yt} generated from MFAR(1) kernels is correlated to functional time series {Xt} while {Yt} generated from FAR(1)
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h=1

Data Generation RMSFE RMSFE Fobs

(MFAR) (FAR)

{Yt} is dependent on {Xt} 0.009160474 0.009312481 0.2572507
{Yt} is independent of {Xt} 0.009157562 0.00964527 0.4351136

Table 1: Simulation Results showing one-step ahead RMSFEs and Fobs statistic

h=5

Data Generation RMSFE RMSFE Fobs

(MFAR) (FAR)

{Yt} is dependent on {Xt} 0.01064169 0.0110255 0.1063456
{Yt} is independent of {Xt} 0.01069097 0.008994967 -0.4220476

Table 2: Simulation Results showing five-step ahead RMSFEs and Fobs statistic

kernel is independent of {Xt}. We use smooth Gaussian process for innovation process εt . In our experiment, we consider
dense sampling design using mt = 25 equally-spaced observation points on [0,1] for all t, however the model works well
with sparse sampling design also. Data sets generated using FAR(1) kernel and MFAR(1) kernels are applied to proposed
model (MFAR) as well as to univariate model proposed by Kowal et. al. (FAR) [5]. Table 1 and Table 2 shows the
one- and five-step root mean squared forecasting errors (RMSFEs) along with the F-statistics respectively. When {Yt} is
dependent on {Xt}, we obtain lower root mean squared forecasting errors for MFAR model compared to FAR model.
Also, we obtain positive Fobs for one-step and five-step forecasting which further illustrates that MFAR model perform
better in presence of correlation among the functional time series.

5 An Empirical Illustration: Yield Curves

To assess the performance of the proposed model, we conducted an extensive forecasting study using yield curves of two
countries: USA and UK. For our study we consider 5 month data starting from Jan 2019 till May 2019. Estimates of
the yield curves are provided for maturities T = {90,180,360,720,1080,2520,3600,10800} days. First four month are
used for estimation to produce one-step ahead and five-step(one business week) ahead forecasts of next month. The one-
and five-step root mean squared forecasting errors (RMSFEs) are calculated using the forecasted values and data for the
fifth month. We compare the RMSFE values for USA and UK yield curves using MFAR(1) model and separately applied
FAR(1) model to both the yield curves, presented in Table 3. Clearly, proposed model performs better than the univariate
case as multivariate model accounts for cross correlation among the yield curves of various countries. To investigate
whether UK yield curve Granger cause USA yield curve, we apply the permutation test described in Section 3. The
p-value we obtain from the permutation test is 0.4333 implying there are not statistically significant result to say that UK
yield curve Granger cause USA yield curve.

h=1 h=5

Country MFAR(1) FAR(1) Fobs Country MFAR(1) FAR(1) Fobs

USA 0.06716552 0.1259286 9.740322 USA 0.1579645 0.1463301 -0.8707428
UK 0.05066788 0.05098459 0.6516207 UK 0.07166108 0.07252083 0.5886336

Table 3: h-step ahead RMSFEs

4

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000399



6 Conclusion

This paper introduces the two-level hierarchical Gaussian process for modeling multivariate functional data. Our model
considers not only auto-correlations in the functional responses, but also considers cross-correlations among the series.
Simulation analysis indicates that the proposed methodology for estimating MFAR(p) produces improve prediction. We
further study the causal relationship among the functional responses, and the positive F-statistics in the simulation analysis
strongly indicate that such causal relationship exists in correlated series. In the yield curve application, we obtained a
better forecast using MFAR(p) model.

References

[1] José R Berrendero, Ana Justel, and Marcela Svarc. “Principal components for multivariate functional
data”. In: Computational Statistics & Data Analysis 55.9 (2011), pp. 2619–2634.

[2] Jeng-Min Chiou, Yu-Ting Chen, and Ya-Fang Yang. “Multivariate functional principal component analysis:
A normalization approach”. In: Statistica Sinica (2014), pp. 1571–1596.

[3] Clive WJ Granger. “Investigating causal relations by econometric models and cross-spectral methods”. In:
Econometrica: journal of the Econometric Society (1969), pp. 424–438.

[4] Julien Jacques and Cristian Preda. “Model-based clustering for multivariate functional data”. In: Compu-
tational Statistics & Data Analysis 71 (2014), pp. 92–106.

[5] Daniel R Kowal, David S Matteson, and David Ruppert. “Functional autoregression for sparsely sampled
data”. In: Journal of Business & Economic Statistics 37.1 (2019), pp. 97–109.

[6] JO Ramsay and BW Silverman. “Principal components analysis for functional data”. In: Functional data
analysis (2005), pp. 147–172.

5

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000400


	Introduction
	Multivariate Functional Autoregression Model
	Dynamic Linear Models for MFAR(p)
	Forecasting MFAR(p)
	Theoretical Results

	Granger Causality in Functional Autoregression Model
	Simulations
	An Empirical Illustration: Yield Curves
	Conclusion



